A comprehensive phylogenetic analysis of termites (Isoptera) illuminates key aspects of their evolutionary biology.

نویسندگان

  • Daegan J G Inward
  • Alfried P Vogler
  • Paul Eggleton
چکیده

The first comprehensive combined molecular and morphological phylogenetic analysis of the major groups of termites is presented. This was based on the analysis of three genes (cytochrome oxidase II, 12S and 28S) and worker characters for approximately 250 species of termites. Parsimony analysis of the aligned dataset showed that the monophyly of Hodotermitidae, Kalotermitidae and Termitidae were well supported, while Termopsidae and Rhinotermitidae were both paraphyletic on the estimated cladogram. Within Termitidae, the most diverse and ecologically most important family, the monophyly of Macrotermitinae, Foraminitermitinae, Apicotermitinae, Syntermitinae and Nasutitermitinae were all broadly supported, but Termitinae was paraphyletic. The pantropical genera Termes, Amitermes and Nasutitermes were all paraphyletic on the estimated cladogram, with at least 17 genera nested within Nasutitermes, given the presently accepted generic limits. Key biological features were mapped onto the cladogram. It was not possible to reconstruct the evolution of true workers unambiguously, as it was as parsimonious to assume a basal evolution of true workers and subsequent evolution of pseudergates, as to assume a basal condition of pseudergates and subsequent evolution of true workers. However, true workers were only found in species with either separate- or intermediate-type nests, so that the mapping of nest habit and worker type onto the cladogram were perfectly correlated. Feeding group evolution, however, showed a much more complex pattern, particularly within the Termitidae, where it proved impossible to estimate unambiguously the ancestral state within the family (which is associated with the loss of worker gut flagellates). However, one biologically plausible optimization implies an initial evolution from wood-feeding to fungus-growing, proposed as the ancestral condition within the Termitidae, followed by the very early evolution of soil-feeding and subsequent re-evolution of wood-feeding in numerous lineages.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Death of an order: a comprehensive molecular phylogenetic study confirms that termites are eusocial cockroaches.

Termites are instantly recognizable mound-builders and house-eaters: their complex social lifestyles have made them incredibly successful throughout the tropics. Although known as 'white ants', they are not ants and their relationships with other insects remain unclear. Our molecular phylogenetic analyses, the most comprehensive yet attempted, show that termites are social cockroaches, no longe...

متن کامل

Phylogenetic Analysis of Cellulolytic Enzyme Genes from Representative Lineages of Termites and a Related Cockroach

The relationship between xylophagous termites and the protists resident in their hindguts is a textbook example of symbiosis. The essential steps of lignocellulose degradation handled by these protists allow the host termites to thrive on a wood diet. There has never been a comprehensive analysis of lignocellulose degradation by protists, however, as it has proven difficult to establish these s...

متن کامل

The evolutionary history of termites as inferred from 66 mitochondrial genomes.

Termites have colonized many habitats and are among the most abundant animals in tropical ecosystems, which they modify considerably through their actions. The timing of their rise in abundance and of the dispersal events that gave rise to modern termite lineages is not well understood. To shed light on termite origins and diversification, we sequenced the mitochondrial genome of 48 termite spe...

متن کامل

Coevolution of symbiotic systems of termites and their gut microorganisms

Coevolution of the symbiotic systems of termites is investigated by comparing the phylogeny of the gut microorganisms among diverse termites. Some major constituents of the gut community, such as Treponema-like spirochetes and the Bacteroides group, showed complex evolutionary history due to their multiple phylogenetic positions. Groups of methanogenic archaea in the guts are distinct between l...

متن کامل

Fungus-Growing Termites Originated in African Rain Forest

Fungus-growing termites (subfamily Macrotermitinae, Isoptera) cultivate fungal crops (genus Termitomyces, Basidiomycotina) in gardens inside their colonies. Those fungus gardens are continuously provided with plant substrates, whereas older parts that have been well decomposed by the fungus are consumed (cf.). Fungus-growing termites are found throughout the Old World tropics, in rain forests a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular phylogenetics and evolution

دوره 44 3  شماره 

صفحات  -

تاریخ انتشار 2007