Shelah’s Eventual Categoricity Conjecture in Tame Aecs with Primes
نویسنده
چکیده
A new case of Shelah’s eventual categoricity conjecture is established: Theorem 1. LetK be an AEC with amalgamation. WriteH2 := i2i(2LS(K))+ + . Assume that K is H2-tame and K≥H2 has primes over sets of the form M∪{a}. If K is categorical in some λ > H2, then K is categorical in all λ′ ≥ H2. The result had previously been established when the stronger locality assumptions of full tameness and shortness are also required. An application of the method of proof of Theorem 1 is that Shelah’s categoricity conjecture holds in the context of homogeneous model theory (this was known, but our proof gives new cases): Theorem 2. Let D be a homogeneous diagram in a first-order theory T . If D is categorical in a λ > |T |, then D is categorical in all λ′ ≥ min(λ,i(2|T |)+ ).
منابع مشابه
Categoricity and Stability in Abstract Elementary Classes
Categoricity and Stability in Abstract Elementary Classes byMonica M. VanDieren This thesis tackles the classification theory of non-elementary classes from twoperspectives. In Chapter II we work towards a categoricity transfer theorem, whileChapter III focuses on the development of a stability theory for abstract elementaryclasses (AECs).The results in Chapter II are in a c...
متن کاملA Downward Categoricity Transfer for Tame Abstract Elementary Classes
We prove a downward transfer from categoricity in a successor in tame abstract elementary classes (AECs). This complements the upward transfer of Grossberg and VanDieren and improves the Hanf number in Shelah’s downward transfer (provided the class is tame). Theorem 0.1. Let K be an AEC with amalgamation. If K is LS(K)-weakly tame and categorical in a successor λ ≥ i(2LS(K))+ , then K is catego...
متن کاملDownward categoricity from a successor inside a good frame
We use orthogonality calculus to prove a downward transfer from categoricity in a successor in abstract elementary classes (AECs) that have a good frame (a forking-like notion for types of singletons) on an interval of cardinals: Theorem 0.1. Let K be an AEC and let LS(K) ≤ λ < θ be cardinals. If K has a type-full good [λ, θ]-frame and K is categorical in both λ and θ, then K is categorical in ...
متن کاملBuilding independence relations in abstract elementary classes
We study general methods to build forking-like notions in the framework of tame abstract elementary classes (AECs) with amalgamation. We show that whenever such classes are categorical in a high-enough cardinal, they admit a good frame: a forking-like notion for types of singleton elements. Theorem 0.1 (Superstability from categoricity). Let K be a (< κ)-tame AEC with amalgamation. If κ = iκ > ...
متن کاملTameness from Large Cardinal Axioms
We show that Shelah’s Eventual Categoricity Conjecture follows from the existence of class many strongly compact cardinals. This is the first time the consistency of this conjecture has been proven. We do so by showing that every AEC with LS(K) below a strongly compact cardinal κ is < κ tame and applying the categoricity transfer of Grossberg and VanDieren [GV06a]. These techniques also apply t...
متن کامل