A sampling algorithm for bandwidth estimation in a nonparametric regression model with a flexible error density
نویسندگان
چکیده
We propose to approximate the unknown error density of a nonparametric regression model by a mixture of Gaussian densities with means being the individual error realizations and variance a constant parameter. This mixture density has the form of a kernel density estimator of error realizations. We derive an approximate likelihood and posterior for bandwidth parameters in the kernel–form error density and the Nadaraya–Watson regression estimator and develop a sampling algorithm. A simulation study shows that when the true error density is non–Gaussian, the kernel–form error density is often favored against its parametric counterparts including the correct error density assumption. Our approach is demonstrated through a nonparametric regression model of the Australian All Ordinaries daily return on the overnight FTSE and S&P 500 returns. Using the estimated bandwidths, we derive the one–day–ahead density forecast of the All Ordinaries return, and a distribution– free value–at–risk is obtained. The proposed algorithm is also applied to a nonparametric regression model involved in state–price density estimation based on S&P 500 options data.
منابع مشابه
Bayesian estimation of bandwidths for a nonparametric regression model with a flexible error density
We approximate the error density of a nonparametric regression model by a mixture of Gaussian densities with means being the individual error realizations and variance a constant parameter. We investigate the construction of a likelihood and posterior for bandwidth parameters under this Gaussian-component mixture density of errors in a nonparametric regression. A Markov chain Monte Carlo algori...
متن کاملBayesian Bandwidth Selection for a Nonparametric Regression Model with Mixed Types of Regressors
This paper develops a sampling algorithm for bandwidth estimation in a nonparametric regression model with continuous and discrete regressors under an unknown error density. The error density is approximated by the kernel density estimator of the unobserved errors, while the regression function is estimated using the Nadaraya-Watson estimator admitting continuous and discrete regressors. We der...
متن کاملStatistical Topology Using the Nonparametric Density Estimation and Bootstrap Algorithm
This paper presents approximate confidence intervals for each function of parameters in a Banach space based on a bootstrap algorithm. We apply kernel density approach to estimate the persistence landscape. In addition, we evaluate the quality distribution function estimator of random variables using integrated mean square error (IMSE). The results of simulation studies show a significant impro...
متن کاملBayesian bandwidth estimation for a nonparametric functional regression model with unknown error density
Error density estimation in a nonparametric functional regression model with functional predictor and scalar response is considered. The unknown error density is approximated by a mixture of Gaussian densities with means being the individual residuals, and variance as a constant parameter. This proposed mixture error density has a form of a kernel density estimator of residuals, where the regre...
متن کاملBayesian Bandwidth Selection in Nonparametric Time - Varying Coefficient Models
Bandwidth plays an important role in determining the performance of local linear estimators. In this paper, we propose a Bayesian approach to bandwidth selection for local linear estimation of time–varying coefficient time series models, where the errors are assumed to follow the Gaussian kernel error density. A Markov chain Monte Carlo algorithm is presented to simultaneously estimate the band...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computational Statistics & Data Analysis
دوره 78 شماره
صفحات -
تاریخ انتشار 2014