The Continuous Ranked Probability Score for Circular Variables and its Application to Mesoscale Forecast Ensemble Verification

نویسندگان

  • Eric P. Grimit
  • Tilmann Gneiting
  • Veronica Berrocal
  • Nicholas A. Johnson
چکیده

An analogue of the linear continuous ranked probability score is introduced that applies to probabilistic forecasts of circular quantities. This scoring rule is proper and thereby discourages hedging. The circular continuous ranked probability score reduces to angular distance when the forecast is deterministic, just as the linear continuous ranked probability score generalizes the absolute error. Furthermore, the continuous ranked probability score provides a direct way of comparing deterministic forecasts, discrete forecast ensembles, and post-processed forecast ensembles that can take the form of probability density functions. The circular continuous ranked probability score is used in this study to assess predictions of 10 m wind direction for 361 cases of mesoscale, short-range ensemble forecasts over the North American Pacific Northwest. Reference probability forecasts based on the ensemble mean and its forecast error history over the period outperform probability forecasts constructed directly from the ensemble sample statistics. These results suggest that short-term forecast uncertainty is not yet well predicted at mesoscale resolutions near the surface, despite the inclusion of multi-scheme physics diversity and surface boundary parameter perturbations in the mesoscale ensemble design.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calibrated Probabilistic Forecasting Using Ensemble Model Output Statistics and Minimum CRPS Estimation∗

Ensemble prediction systems typically show positive spread-error correlation, but they are subject to forecast bias and underdispersion, and therefore uncalibrated. This work proposes the use of ensemble model output statistics (EMOS), an easy to implement post-processing technique that addresses both forecast bias and underdispersion and takes account of the spread-skill relationship. The tech...

متن کامل

Assessing probabilistic forecasts of multivariate quantities, with an application to ensemble predictions of surface winds

We discuss methods for the evaluation of probabilistic predictions of vector-valued quantities, that can take the form of a discrete forecast ensemble or a density forecast. In particular, we propose a multivariate version of the univariate verification rank histogram or Talagrand diagram that can be used to check the calibration of ensemble forecasts. In the case of density forecasts, Box’s de...

متن کامل

Initial Results of a Mesoscale Short-Range Ensemble Forecasting System over the Pacific Northwest

Motivated by the promising results of global-scale ensemble forecasting, a number of groups have attempted mesoscale, short-range ensemble forecasting (SREF), focusing mainly over the eastern half of the United States. To evaluate the performance of mesoscale SREF over the Pacific Northwest and to test the value of using different initial analyses as a means of ensemble forecast generation, a f...

متن کامل

Preliminary evaluation of a short-range ensemble prediction system over western Mediterranean

A generation of a short-range ensemble prediction system, based on a set of mesoscale models with different subgrid-scale physic schemes and two different initial conditions, is developed, providing flow-dependent probabilistic forecasts by means of predictive probability distributions over the Western Mediterranean. A ten members short-range ensemble forecast system has been constructed over w...

متن کامل

Uncertainty assessment via Bayesian revision of ensemble streamflow predictions in the operational river Rhine forecasting system

[1] Ensemble streamflow forecasts obtained by using hydrological models with ensemble weather products are becoming more frequent in operational flow forecasting. The uncertainty of the ensemble forecast needs to be assessed for these products to become useful in forecasting operations. A comprehensive framework for Bayesian revision has been recently developed and applied to operational flood ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005