A fatigue microcrack alters fluid velocities in a computational model of interstitial fluid flow in cortical bone.
نویسندگان
چکیده
Targeted remodeling is activated by fatigue microcracks and plays an important role in maintaining bone integrity. It is widely believed that fluid flow-induced shear stress plays a major role in modulating the mechanotransduction process. Therefore, it is likely that fluid flow-induced shear stress plays a major role in the initiation of the repair of fatigue damage. Since no in vivo measurements of fluid flow within bone exist, computational and mathematical models must be employed to investigate the fluid flow field and the shear stress occurring within cortical bone. We developed a computational fluid dynamic model of cortical bone to examine the effect of a fatigue microcrack on the fluid flow field. Our results indicate that there are alterations in the fluid flow field as far as 150 microm away from the crack, and that at distances farther than this, the fluid flow field is similar to the fluid flow field of intact bone. Through the crack and immediately above and below it, the fluid velocity is higher, while at the lateral edges it is lower than that calculated for the intact model, with a maximum change of 29%. Our results suggest that the presence of a fatigue microcrack can alter the shear stress in regions near the crack. These alterations in shear stress have the potential to significantly alter mechanotransduction and may play a role in the initiation of the repair of fatigue microcracks.
منابع مشابه
Improving the Cooling Process of Heavy-Duty Engines through Three Dimensional Simulation of Fluid Flow in its Coolant Centrifugal Pump
This paper investigates 3D simulation of fluid flow in a centrifugal pump from the Detroit Diesel company to extract possible engine cooling trends. The velocity and pressure profile of water, the coolant, is analyzed and the characteristic curves of the pump are derived. This provides a useful evaluation of the pump performance at all working conditions. For this aim, a computational fluid dy...
متن کاملFatigue microcracks that initiate fracture are located near elevated intracortical porosity but not elevated mineralization.
In vivo microcracks in cortical bone are typically observed within more highly mineralized interstitial tissue, but postmortem investigations are inherently limited to cracks that did not lead to fracture which may be misleading with respect to understanding fracture mechanisms. We hypothesized that the one fatigue microcrack which initiates fracture is located spatially adjacent to elevated in...
متن کاملComputational fluid dynamics simulation of the flow patterns and performance of conventional and dual-cone gas-particle cyclones
One of the main concerns of researchers is the separation of suspended particles in a fluid. Accordingly, the current study numerically investigated the effects of a conical section on the flow pattern of a Stairmand cyclone by simulating single-cone and dual-cone cyclones. A turbulence model was used to analyze incompressible gas-particle flow in the cyclone models, and the Eulerian–Lagrangian...
متن کاملCFD-Calculation of Fluid Flow in a
An accurate description of the fluid flow and heat transfer within a Pressurized Water Reactor (PWR), for the safety analysis and reactor performance is always desirable. In this paper a mathematical model of the fundamental physical phenomena which are associated to a typical PWR is presented. The mathematical model governs the fluid dynamics in the reactor. Using commercial software CFX, a co...
متن کاملFlow Variables Prediction Using Experimental, Computational Fluid Dynamic and Artificial Neural Network Models in a Sharp Bend
Bend existence induces changes in the flow pattern, velocity profiles and water surface. In the present study, based on experimental data, first three-dimensional computational fluid dynamic (CFD) model is simulated by using Fluent two-phase (water + air) as the free surface and the volume of fluid method, to predict the two significant variables (velocity and channel bed pressure) in 90º sharp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomechanics
دوره 39 11 شماره
صفحات -
تاریخ انتشار 2006