Efficient Markov Chain Monte Carlo Methods for Decoding Neural Spike Trains
نویسندگان
چکیده
Stimulus reconstruction or decoding methods provide an important tool for understanding how sensory and motor information is represented in neural activity. We discuss Bayesian decoding methods based on an encoding generalized linear model (GLM) that accurately describes how stimuli are transformed into the spike trains of a group of neurons. The form of the GLM likelihood ensures that the posterior distribution over the stimuli that caused an observed set of spike trains is log concave so long as the prior is. This allows the maximum a posteriori (MAP) stimulus estimate to be obtained using efficient optimization algorithms. Unfortunately, the MAP estimate can have a relatively large average error when the posterior is highly nongaussian. Here we compare several Markov chain Monte Carlo (MCMC) algorithms that allow for the calculation of general Bayesian estimators involving posterior expectations (conditional on model parameters). An efficient version of the hybrid Monte Carlo (HMC) algorithm was significantly superior to other MCMC methods for gaussian priors. When the prior distribution has sharp edges and corners, on the other hand, the "hit-and-run" algorithm performed better than other MCMC methods. Using these algorithms, we show that for this latter class of priors, the posterior mean estimate can have a considerably lower average error than MAP, whereas for gaussian priors, the two estimators have roughly equal efficiency. We also address the application of MCMC methods for extracting nonmarginal properties of the posterior distribution. For example, by using MCMC to calculate the mutual information between the stimulus and response, we verify the validity of a computationally efficient Laplace approximation to this quantity for gaussian priors in a wide range of model parameters; this makes direct model-based computation of the mutual information tractable even in the case of large observed neural populations, where methods based on binning the spike train fail. Finally, we consider the effect of uncertainty in the GLM parameters on the posterior estimators.
منابع مشابه
Markov Chain Monte Carlo Methods for Decoding Neural Spike Trains
Stimulus reconstruction or decoding methods provide an important tool for understanding how sensory and motor information is represented in neural activity. We address Bayesian decoding methods based on an encoding generalized linear model (GLM) [1, 2] that accurately describes how stimuli are transformed into the spike trains of a group of neurons. The log-concave GLM likelihood is combined wi...
متن کاملEstimating Conditional Intensity Function of a Neural Spike Train by Particle Markov Chain Monte Carlo and Smoothing
Understanding neural activities is fundamental and challenging in decoding how the brain processes information. An essential part of the problem is to define a meaningful and quantitative characterization of neural activities when they are represented by a sequence of action potentials or a neural spike train. The thesis approaches to use a point process to represent a neural spike train, and s...
متن کاملSequential Monte Carlo Point-Process Estimation of Kinematics from Neural Spiking Activity for Brain-Machine Interfaces
Many decoding algorithms for brain machine interfaces' (BMIs) estimate hand movement from binned spike rates, which do not fully exploit the resolution contained in spike timing and may exclude rich neural dynamics from the modeling. More recently, an adaptive filtering method based on a Bayesian approach to reconstruct the neural state from the observed spike times has been proposed. However, ...
متن کاملMethods for studying the neural code in high dimensions
Methods for studying the neural code in high dimensions Alexandro D. Ramirez Over the last two decades technological developments in multi-electrode arrays and fluorescence microscopy have made it possible to simultaneously record from hundreds to thousands of neurons. Developing methods for analyzing these data in order to learn how networks of neurons respond to external stimuli and process i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neural computation
دوره 23 1 شماره
صفحات -
تاریخ انتشار 2011