HSPB1 Facilitates the Formation of Non-Centrosomal Microtubules
نویسندگان
چکیده
The remodeling capacity of microtubules (MT) is essential for their proper function. In mammals, MTs are predominantly formed at the centrosome, but can also originate from non-centrosomal sites, a process that is still poorly understood. We here show that the small heat shock protein HSPB1 plays a role in the control of non-centrosomal MT formation. The HSPB1 expression level regulates the balance between centrosomal and non-centrosomal MTs. The HSPB1 protein can be detected specifically at sites of de novo forming non-centrosomal MTs, while it is absent from the centrosomes. In addition, we show that HSPB1 binds preferentially to the lattice of newly formed MTs in vitro, suggesting that its function occurs by stabilizing MT seeds. Our findings open new avenues for the understanding of the role of HSPB1 in the development, maintenance and protection of cells with specialized non-centrosomal MT arrays.
منابع مشابه
Ninein is essential for apico-basal microtubule formation and CLIP-170 facilitates its redeployment to non-centrosomal microtubule organizing centres
Differentiation of columnar epithelial cells involves a dramatic reorganization of the microtubules (MTs) and centrosomal components into an apico-basal array no longer anchored at the centrosome. Instead, the minus-ends of the MTs become anchored at apical non-centrosomal microtubule organizing centres (n-MTOCs). Formation of n-MTOCs is critical as they determine the spatial organization of MT...
متن کاملPeripheral, Non-Centrosome-Associated Microtubules Contribute to Spindle Formation in Centrosome-Containing Cells
In centrosome-containing cells, microtubules utilized in spindle formation are thought to be nucleated at the centrosome. However, spindle formation can proceed following experimental destruction of centrosomes or in cells lacking centrosomes, suggesting that non-centrosome-associated microtubules may contribute to spindle formation, at least when centrosomes are absent. Direct observation of p...
متن کاملMicrotubule Minus-End Binding Protein CAMSAP2 Controls Axon Specification and Dendrite Development
In neurons, most microtubules are not associated with a central microtubule-organizing center (MTOC), and therefore, both the minus and plus-ends of these non-centrosomal microtubules are found throughout the cell. Microtubule plus-ends are well established as dynamic regulatory sites in numerous processes, but the role of microtubule minus-ends has remained poorly understood. Using live-cell i...
متن کاملHuman Sperm Aster Formation and Chromatin Configuration in Rabbit Oocytes Following Intracytoplasmic Sperm Injection Using a Piezo-Micromanipulator
In human fertilization, the sperm centrosome nucleates a radial array of microtubules called the sperm aster. The sperm aster is responsible for apposition of male and female pronuclei, and later gives rise to the first meiotic spindle. The objective of this study was to determine microtubule assembly and chromatin configuration in rabbit oocytes following intracytoplasmic injection with human ...
متن کاملNon-centrosomal microtubule formation and measurement of minus end microtubule dynamics in A498 cells.
Experiments performed on a cell line (A498) derived from a human kidney carcinoma revealed non-centrosomal microtubules in the peripheral lamella of many cells. These short microtubules were observed in glutaraldehyde-fixed cells by indirect immunofluorescence, and in live cells injected with rhodamine-labeled tubulin. The non-centrosomal microtubules were observed to form de novo in living cel...
متن کامل