Lentiviral vectors encoding tetracycline-dependent repressors and transactivators for reversible knockdown of gene expression: a comparative study
نویسندگان
چکیده
BACKGROUND RNA interference (RNAi)-mediated by the expression of short hairpin RNAs (shRNAs) has emerged as a powerful experimental tool for reverse genetic studies in mammalian cells. A number of recent reports have described approaches allowing regulated production of shRNAs based on modified RNA polymerase II (Pol II) or RNA polymerase III (Pol III) promoters, controlled by drug-responsive transactivators or repressors such as tetracycline (Tet)-dependent transactivators and repressors. However, the usefulness of these approaches is often times limited, caused by inefficient delivery and/or expression of shRNA-encoding sequences in target cells and/or poor design of shRNAs sequences. With a view toward optimizing Tet-regulated shRNA expression in mammalian cells, we compared the capacity of a variety of hybrid Pol III promoters to express short shRNAs in target cells following lentivirus-mediated delivery of shRNA-encoding cassettes. RESULTS RNAi-mediated knockdown of gene expression in target cells, controlled by a modified Tet-repressor (TetR) in the presence of doxycycline (Dox) was robust. Expression of shRNAs from engineered human U6 (hU6) promoters containing a single tetracycline operator (TO) sequence between the proximal sequence element (PSE) and the TATA box, or an improved second-generation Tet-responsive promoter element (TRE) placed upstream of the promoter was tight and reversible as judged using quantitative protein measurements. We also established and tested a novel hU6 promoter system in which the distal sequence element (DSE) of the hU6 promoter was replaced with a second-generation TRE. In this system, positive regulation of shRNA production is mediated by novel Tet-dependent transactivators bearing transactivation domains derived from the human Sp1 transcription factor. CONCLUSION Our modified lentiviral vector system resulted in tight and reversible knockdown of target gene expression in unsorted cell populations. Tightly regulated target gene knockdown was observed with vectors containing either a single TO sequence or a second-generation TRE using carefully controlled transduction conditions. We expect these vectors to ultimately find applications for tight and reversible RNAi in mammalian cells in vivo.
منابع مشابه
HIV-Derived Lentiviral Vectors: Current Progress toward Gene Therapy and DNA Vaccination
Lentiviral vectors are promising gene delivery tools capable of transducing a variety of dividing and non-dividing cells, including pluripotent stem cells which are refractory for transduction by murine retroviruses. Although there is a growing debate on the safety of lentiviral vectors for gene transfer, in particular for those derived from human immunodeficiency viruses, type one (HIV-1) and ...
متن کاملInducible and reversible transgene expression in human stem cells after efficient and stable gene transfer.
We report here a lentiviral vector system for regulated transgene expression. We used the tetracycline repressor fused with a transcriptional suppression domain (tTS) to specifically suppress transgene expression. Human cells were first transduced with a tTS-expressing vector and subsequently transduced with a second lentiviral vector-containing transgene controlled by a regular promoter adjace...
متن کاملA lentiviral microRNA-based system for single-copy polymerase II-regulated RNA interference in mammalian cells.
The advent of RNA interference has led to the ability to interfere with gene expression and greatly expanded our ability to perform genetic screens in mammalian cells. The expression of short hairpin RNA (shRNA) from polymerase III promoters can be encoded in transgenes and used to produce small interfering RNAs that down-regulate specific genes. In this study, we show that polymerase II-transc...
متن کاملExpression of acrA and acrB Genes in Esherichia coli Mutants with or without marR or acrR Mutations
Objective(s): The major antibiotic efflux pump of Esherichia coli is AcrAB-TolC. The first part of the pump, AcrAB, is encoded by acrAB operon. The expression of this operon can be kept elevated by overexpression of an activator, MarA following inactivation of MarR and AcrR repressors due to mutation in encoding genes, marR and acrR, respectively. The aims of this research were to us...
متن کاملBeta thalassemia gene therapy using lentiviral vectors
Recent years, allogeneic bone marrow transplantation (BMT) has proved to be the successful cure for patients with thalassemia major, however this is restricted due to limited matched-related donor. Its complications include chronic graft-versus-host disease in 5-8% of patients. So, a molecular approach, such as gene therapy for direct normal beta globin gene transmission, seems quite promising ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- BMC Biotechnology
دوره 7 شماره
صفحات -
تاریخ انتشار 2007