Priors in Bayesian Learning of Phonological Rules
نویسندگان
چکیده
This paper describes a Bayesian procedure for unsupervised learning of phonological rules from an unlabeled corpus of training data. Like Goldsmith’s Linguistica program (Goldsmith, 2004b), whose output is taken as the starting point of this procedure, our learner returns a grammar that consists of a set of signatures, each of which consists of a set of stems and a set of suffixes. Our grammars differ from Linguistica’s in that they also contain a set of phonological rules, specifically insertion, deletion and substitution rules, which permit our grammars to collapse far more words into a signature than Linguistica can. Interestingly, the choice of Bayesian prior turns out to be crucial for obtaining a learner that makes linguistically appropriate generalizations through a range of different sized training corpora.
منابع مشابه
Bayesian Sample size Determination for Longitudinal Studies with Continuous Response using Marginal Models
Introduction Longitudinal study designs are common in a lot of scientific researches, especially in medical, social and economic sciences. The reason is that longitudinal studies allow researchers to measure changes of each individual over time and often have higher statistical power than cross-sectional studies. Choosing an appropriate sample size is a crucial step in a successful study. A st...
متن کاملBayesian Inference for Spatial Beta Generalized Linear Mixed Models
In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...
متن کاملBayesian Estimation of Shift Point in Shape Parameter of Inverse Gaussian Distribution Under Different Loss Functions
In this paper, a Bayesian approach is proposed for shift point detection in an inverse Gaussian distribution. In this study, the mean parameter of inverse Gaussian distribution is assumed to be constant and shift points in shape parameter is considered. First the posterior distribution of shape parameter is obtained. Then the Bayes estimators are derived under a class of priors and using variou...
متن کاملLocation Reparameterization and Default Priors for Statistical Analysis
This paper develops default priors for Bayesian analysis that reproduce familiar frequentist and Bayesian analyses for models that are exponential or location. For the vector parameter case there is an information adjustment that avoids the Bayesian marginalization paradoxes and properly targets the prior on the parameter of interest thus adjusting for any complicating nonlinearity the details ...
متن کاملPrépublications Du Laboratoire Maxiset Comparisons of Procedures, Application to Choosing Priors in a Bayesian Nonparametric Setting Maxiset Comparisons of Procedures, Application to Choosing Priors in a Bayesian Nonparametric Setting. *
In this paper our aim is to provide tools for easily calculating the maxisets of several procedures. Then we apply these results to perform a comparison between several Bayesian estimators in a non parametric setting. We obtain that many Bayesian rules can be described through a general behavior such as being shrinkage rules, limited, and/or elitist rules. This has consequences on their maxiset...
متن کامل