Mehrotra-type predictor-corrector algorithm revisited

نویسندگان

  • Maziar Salahi
  • Tamás Terlaky
چکیده

Motivated by a numerical example which shows that a feasible version of Mehrotra’s original predictor-corrector algorithm might be inefficient in practice, Salahi et al., proposed a so-called safeguard based variant of the algorithm that enjoys polynomial iteration complexity while its practical efficiency is preserved. In this paper we analyze the same Mehrotra’s algorithm from a different perspective. We give a condition on the maximum step size in the predictor step, violation of which might imply a very small or zero step size in the corrector step of the algorithm. This might explain the reason for occasional ill behavior of the original algorithm. We propose to cut the maximum step size in the predictor step if it is above a certain threshold. If this cut does not give a desirable step size, then we cut it for the second time that allows us to give a lower bound for the step size in the corrector step. This enables us to prove an O ( n 5 2 log n2 ) worst case iteration complexity bound for the new algorithm. By slightly modifying the Newton system in the corrector step we reduce the iteration complexity to O ( n 3 2 log n2 ) . Finally, we report some illustrative computational results using the McIPM software package.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Mehrotra-Type Predictor-Corrector Algorithm for P∗(κ) Linear Complementarity Problems

Mehrotra-type predictor-corrector algorithm, as one of most efficient interior point methods, has become the backbones of most optimization packages. Salahi et al. proposed a cut strategy based algorithm for linear optimization that enjoyed polynomial complexity and maintained its efficiency in practice. We extend their algorithm to P∗(κ) linear complementarity problems. The way of choosing cor...

متن کامل

Polynomial Convergence of a Predictor-Corrector Interior-Point Algorithm for LCP

We establishe the polynomial convergence of a new class of pathfollowing methods for linear complementarity problems (LCP). Namely, we show that the predictor-corrector methods based on the L2 norm neighborhood. Mathematics Subject Classification: 90C33, 65G20, 65G50

متن کامل

On Mehrotra-Type Predictor-Corrector Algorithms

In this paper we discuss the polynomiality of Mehrotra-type predictor-corrector algorithms. We consider a variant of the original prototype of the algorithm that has been widely used in several IPM based optimization packages, for which no complexity result is known to date. By an example we show that in this variant the usual Mehrotra-type adaptive choice of the parameter μ might force the alg...

متن کامل

A Predictor - Corrector Interior - Point Algorithm for the Semide nite Linear Complementarity Problem Using the Alizadeh - Haeberly - Overton Search

This paper proposes a globally convergent predictor-corrector infeasible-interiorpoint algorithm for the monotone semide nite linear complementarity problem using the AlizadehHaeberly-Overton search direction, and shows its quadratic local convergence under the strict complementarity condition.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optimization Methods and Software

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2008