Optimization of Smooth Functions with Noisy Observations: Local Minimax Rates

نویسندگان

  • Yining Wang
  • Sivaraman Balakrishnan
  • Aarti Singh
چکیده

We consider the problem of global optimization of an unknown non-convex smooth function with zeroth-order feedback. In this setup, an algorithm is allowed to adaptively query the underlying function at different locations and receives noisy evaluations of function values at the queried points (i.e. the algorithm has access to zeroth-order information). Optimization performance is evaluated by the expected difference of function values at the estimated optimum and the true optimum. In contrast to the classical optimization setup, first-order information like gradients are not directly accessible to the optimization algorithm. We show that the classical minimax framework of analysis, which roughly characterizes the worst-case query complexity of an optimization algorithm in this setting, leads to excessively pessimistic results. We propose a local minimax framework to study the fundamental difficulty of optimizing smooth functions with adaptive function evaluations, which provides a refined picture of the intrinsic difficulty of zeroth-order optimization. We show that for functions with fast level set growth around the global minimum, carefully designed optimization algorithms can identify a near global minimizer with many fewer queries. For the special case of strongly convex and smooth functions, our implied convergence rates match the ones developed for zeroth-order convex optimization problems [1, 22]. At the other end of the spectrum, for worst-case smooth functions no algorithm can converge faster than the minimax rate of estimating the entire unknown function in the l8-norm. We provide an intuitive and efficient algorithm that attains the derived upper error bounds. Finally, using the local minimax framework we are able to clearly dichotomize adaptive and non-adaptive algorithms by showing that non-adaptive algorithms, although optimal in a global minimax sense, do not attain the optimal local minimax rate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Minimax Optimality of Block Thresholded Wavelets Estimators for ?-Mixing Process

We propose a wavelet based regression function estimator for the estimation of the regression function for a sequence of ?-missing random variables with a common one-dimensional probability density function. Some asymptotic properties of the proposed estimator based on block thresholding are investigated. It is found that the estimators achieve optimal minimax convergence rates over large class...

متن کامل

Algorithmic Connections between Active Learning and Stochastic Convex Optimization

Interesting theoretical associations have been established by recent papers between the fields of active learning and stochastic convex optimization due to the common role of feedback in sequential querying mechanisms. In this paper, we continue this thread in two parts by exploiting these relations for the first time to yield novel algorithms in both fields, further motivating the study of the...

متن کامل

Optimal Change-Point Estimation from Indirect Observations

We study nonparametric change-point estimation from indirect noisy observations. Focusing on the white noise convolution model, we consider two classes of functions that are smooth apart from the change-point. We establish lower bounds on the minimax risk in estimating the change-point and develop rate optimal estimation procedures. The results demonstrate that the best achievable rates of conv...

متن کامل

Optimal Change-point Estimation from Indirect Observations by A. Goldenshluger,1 A. Tsybakov

We study nonparametric change-point estimation from indirect noisy observations. Focusing on the white noise convolution model, we consider two classes of functions that are smooth apart from the change-point. We establish lower bounds on the minimax risk in estimating the change-point and develop rate optimal estimation procedures. The results demonstrate that the best achievable rates of conv...

متن کامل

Algorithmic Differentiation for Piecewise Smooth Functions: A Case Study for Robust Optimization

This paper presents a minimization method for Lipschitz continuous, piecewise smooth objective functions based on algorithmic differentiation (AD). We assume that all nondifferentiabilities are caused by abs(), min(), and max(). The optimization method generates successively piecewise linearizations in abs-normal form and solves these local subproblems by exploiting the resulting kink structure...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018