Dual Artificial Neural Network for Rainfall-Runoff Forecasting
نویسندگان
چکیده
One of the principal issues related to hydrologic models for prediction of runoff is the estimation of extreme values (floods). It is well understood that unless the models capture the dynamics of rainfall-runoff process, the improvement in prediction of such extremes is far from reality. In this paper, it is proposed to develop a dual (combined and paralleled) artificial neural network (D-ANN), which aims to improve the models performance, especially in terms of extreme values. The performance of the proposed dual-ANN model is compared with that of feed forward ANN (FF-ANN) model, the later being the most common ANN model used in hydrologic literature. The forecasting exercise is carried out for hourly river flow data of Kolar Basin, India. The results of the comparison indicate that the D-ANN model performs better than the FF-ANN model.
منابع مشابه
Daily river flow forecasting in a semi-arid region using twodatadriven
Rainfall-runoff relationship is very important in many fields of hydrology such as water supply and water resourcemanagement and there are many models in this field. Among these models, the Artificial Neural Network (ANN) wasfound suitable for processing rainfall-runoff and opened various approaches in hydrological modeling. In addition,ANNs are quick and flexible approaches which provide very ...
متن کاملMonthly runoff forecasting by means of artificial neural networks (ANNs)
Over the last decade or so, artificial neural networks (ANNs) have become one of the most promising tools formodelling hydrological processes such as rainfall runoff processes. However, the employment of a single model doesnot seem to be an appropriate approach for modelling such a complex, nonlinear, and discontinuous process thatvaries in space and time. For this reason, this study aims at de...
متن کاملThe efficiency of Artificial Neural Network, Neuro-Fuzzy and Multivariate Regression models for runoff and erosion simulation using rainfall simulator
1- INTRODUCTION According to the complexity of environmental factors related to erosion and runoff, correct simulation of these variables find importance under rain intensity domain of watershed areas. Although modeling of erosion and runoff by Artificial Neural Network and Neuro-Fuzzy based on rainfall-runoff and discharge-sediment models were widely applied by researchers, scrutinizing Arti...
متن کاملبررسی توانمندی مدل شبکه عصبی مصنوعی در شبیهسازی فرآیند بارش-رواناب در شرایط تغییر اقلیم (مطالعه موردی: حوزه سد پاشاکلا بابل)
River flow forecasting plays an important role in planning, management and operation of water resources. To achieve this goal and according to the phenomenon of global warming, it is necessary to simulate the daily time series of rainfall and runoff for future periods. Therefore, it is important to survey the detection of climate change event and its impact on precipitation and runoff in the ba...
متن کاملNeural networks and non-parametric methods for improving real- time flood forecasting through conceptual hydrological models
Time-series analysis techniques for improving the real-time flood forecasts issued by a deterministic lumped rainfall-runoff model are presented. Such techniques are applied for forecasting the short-term future rainfall to be used as real-time input in a rainfall-runoff model and for updating the discharge predictions provided by the model. Along with traditional linear stochastic models, both...
متن کامل