The Weight and Nonlinearity of 2-rotation Symmetric Cubic Boolean Function
نویسنده
چکیده
The conceptions of χ-value and K-rotation symmetric Boolean functions are introduced by Cusick. K-rotation symmetric Boolean functions are a special rotation symmetric functions, which are invariant under the k − th power of ρ. In this paper, we discuss cubic 2-value 2-rotation symmetric Boolean function with 2n variables, which denoted by F2n(x2n). We give the recursive formula of weight of F2n(x2n), and prove that the weight of F2n(x2n) is the same as its nonlinearity.
منابع مشابه
Nonlinearity of quartic rotation symmetric Boolean functions
Nonlinearity of rotation symmetric Boolean functions is an important topic on cryptography algorithm. Let e ≥ 1 be any given integer. In this paper, we investigate the following question: Is the nonlinearity of the quartic rotation symmetric Boolean function generated by the monomial x0xex2ex3e equal to its weight? We introduce some new simple sub-functions and develop new technique to get seve...
متن کاملBalanced Boolean Functions with Nonlinearity > 2 n – 1 – 2
Recently, balanced 15-variable Boolean functions with nonlinearity 16266 were obtained by suitably modifying unbalanced Patterson-Wiedemann (PW) functions, which possess nonlinearity 2–2 + 20 = 16276. In this short paper, we present an idempotent (interpreted as rotation symmetric Boolean function) with nonlinearity 16268 having 15 many zeroes in the Walsh spectrum, within the neighborhood of P...
متن کاملGeneralized Rotation Symmetric and Dihedral Symmetric Boolean Functions - 9 Variable Boolean Functions with Nonlinearity 242
Recently, 9-variable Boolean functions having nonlinearity 241, which is strictly greater than the bent concatenation bound of 240, have been discovered in the class of Rotation Symmetric Boolean Functions (RSBFs) by Kavut, Maitra and Yücel. In this paper, we present several 9-variable Boolean functions having nonlinearity of 242, which we obtain by suitably generalizing the classes of RSBFs an...
متن کاملFast evaluation, weights and nonlinearity of rotation-symmetric functions
We study the nonlinearity and the weight of the rotation-symmetric (RotS) functions defined by Pieprzyk and Qu [6]. We give exact results for the nonlinearity and weight of 2-degree RotS functions with the help of the semi-bent functions [2] and we give the generating function for the weight of the 3-degree RotS function. Based on the numerical examples and our observations we state a conjectur...
متن کاملNew Construction of Even-variable Rotation Symmetric Boolean Functions with Optimum Algebraic Immunity
The rotation symmetric Boolean functions which are invariant under the action of cyclic group have been used as components of different cryptosystems. In order to resist algebraic attacks, Boolean functions should have high algebraic immunity. This paper studies the construction of even-variable rotation symmetric Boolean functions with optimum algebraic immunity. We construct ( / 4 3) n ...
متن کامل