Strategies for attenuation compensation in neurological PET studies.
نویسندگان
چکیده
Molecular brain imaging using positron emission tomography (PET) has evolved into a vigorous academic field and is progressively gaining importance in the clinical arena. Significant progress has been made in the design of high-resolution three-dimensional (3-D) PET units dedicated to brain research and the development of quantitative imaging protocols incorporating accurate image correction techniques and sophisticated image reconstruction algorithms. However, emerging clinical and research applications of molecular brain imaging demand even greater levels of accuracy and precision and therefore impose more constraints with respect to the quantitative capability of PET. It has long been recognized that photon attenuation in tissues is the most important physical factor degrading PET image quality and quantitative accuracy. Quantitative PET image reconstruction requires an accurate attenuation map of the object under study for the purpose of attenuation compensation. Several methods have been devised to correct for photon attenuation in neurological PET studies. Significant attention has been devoted to optimizing computational performance and to balancing conflicting requirements. Approximate methods suitable for clinical routine applications and more complicated approaches for research applications, where there is greater emphasis on accurate quantitative measurements, have been proposed. The number of scientific contributions related to this subject has been increasing steadily, which motivated the writing of this review as a snapshot of the dynamically changing field of attenuation correction in cerebral 3D PET. This paper presents the physical and methodological basis of photon attenuation and summarizes state of the art developments in algorithms used to derive the attenuation map aiming at accurate attenuation compensation of brain PET data. Future prospects, research trends and challenges are identified and directions for future research are discussed.
منابع مشابه
Computed tomography based attenuation correction in PET/CT: Principles, instrumentation, protocols, artifacts and future trends
The advent of dual-modality PET/CT imaging has revolutionized the practice of clinical oncology, cardiology and neurology by improving lesions localization and the possibility of accurate quantitative analysis. In addition, the use of CT images for CT-based attenuation correction (CTAC) allows to decrease the overall scanning time and to create a noise-free attenuat...
متن کاملComparing 511 keV Attenuation Maps Obtained from Different Energy Mapping Methods for CT Based Attenuation Correction of PET Data
Introduction: The advent of dual-modality PET/CT scanners has revolutionized clinical oncology by improving lesion localization and facilitating treatment planning for radiotherapy. In addition, the use of CT images for CT-based attenuation correction (CTAC) decreases the overall scanning time and creates a noise-free attenuation map (6map). CTAC methods include scaling, s...
متن کاملComparison of threshold-based and watershed-based segmentation for the truncation compensation of PET/MR images
Recently introduced combined PET/MR scanners need to handle the specific problem that a limited MR field of view sometimes truncates arm or body contours, which prevents an accurate calculation of PET attenuation correction maps. Such maps of attenuation coefficients over body structures are required for a quantitatively correct PET image reconstruction. This paper addresses this problem by pre...
متن کاملA New Approach for Scatter Removal and Attenuation Compensation from SPECT/CT Images
Objective(s): In SPECT, the sinogram contains scatter and lack of attenuated counts that degrade the reconstructed image quality and quantity. Many techniques for attenuation and scatter correction have been proposed. An acceptable method of correction is to incorporate effects into an iterative statistical reconstruction. Here, we propose new Maximum Likelihood Expectation Maximiz...
متن کاملAdvanced Motion Correction Methods in PET
With the arrival of increasingly higher resolution PET systems, small amounts of motion can cause significant blurring in the images, compared to the intrinsic resolutions of the scanners. In this work, we have reviewed advanced correction methods for the three cases of (i) unwanted patient motion, as well as motions due to (ii) cardiac and (iii) respiratory cycles. For the first type of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- NeuroImage
دوره 34 2 شماره
صفحات -
تاریخ انتشار 2007