Specificity determinants of CYP1B1 estradiol hydroxylation.

نویسندگان

  • Clinton R Nishida
  • Steven Everett
  • Paul R Ortiz de Montellano
چکیده

Cytochrome P450 (P450)-catalyzed oxidation of the aromatic ring of estradiol can result in 2- or 4-hydroxylation. Which of these products is formed is biologically important, as the 4-hydroxylated metabolite is carcinogenic, whereas the 2-hydroxylated metabolite is not. Most human P450 enzymes, including CYP1A1 and CYP1A2, exhibit a high preference for estradiol 2-hydroxylation, but human CYP1B1 greatly favors 4-hydroxylation. Here we show that heterologous expression of the human, monkey, dog, rat, and mouse CYP1B1 enzymes yields active proteins that differ in their estradiol hydroxylation specificity. The monkey and dog orthologs, like the human enzyme, preferentially catalyze 4-hydroxylation, but the rat and mouse enzymes favor 2-hydroxylation. Analysis of the CYP1B1 sequences in light of these findings suggested that one residue, Val395 in human CYP1B1, could account for the differential hydroxylation specificities. In fact, mutation of this valine in human CYP1B1 to the leucine present in the rat enzyme produces a human enzyme that has the 2-hydroxylation specificity of the rat enzyme. The converse is true when the leucine in the rat enzyme is mutated to the human valine. The role of CYP1B1 in estradiol carcinogenicity thus depends on the identity of this single amino acid residue.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A 3D Model of CYP1B1 Explains the Dominant 4-Hydroxylation of Estradiol

CYP1A1 and CYP1A2 exhibit catalytic activity predominantly for the 2-hydroxylation of estradiol, whereas CYP1B1 exhibits catalytic activity predominantly for 4-hydroxylation of estradiol. To understand why CYP1B1 predominantly hydroxylates the 4-position of estradiol, we constructed three-dimensional structures of CYP1A1 and CYP1B1 by homology modeling, using the crystal structure of CYP1A2, an...

متن کامل

CYP1B1 is not a major determinant of the disposition of aromatase inhibitors in epithelial cells of invasive ductal carcinoma.

CYP1B1 and CYP19 (aromatase) have been shown to be expressed in breast tumors. Both enzymes are efficient estrogen hydroxylases, indicating the potential for overlapping substrate and inhibitor specificity. We measured the inhibition properties of aromatase inhibitors (AIs) against CYP1B1-catalyzed hydroxylation of 17beta-estradiol (E2) to determine whether CYP1B1 affects the disposition of AIs...

متن کامل

Cytochrome P450 1B1 (CYP1B1) pharmacogenetics: association of polymorphisms with functional differences in estrogen hydroxylation activity.

Activation of 17beta-estradiol (E2) through the formation of catechol estrogen metabolites, 2-OH-E2 and 4-OH-E2, and the C-16alpha hydroxylation product, 16alpha-OH-E2, has been postulated to be a factor in mammary carcinogenesis. Cytochrome P450 1B1 (CYP1B1) exceeds other P450 enzymes in both estrogen hydroxylation activity and expression level in breast tissue. To determine whether inherited ...

متن کامل

Differential expression of CYP1A1 and CYP1B1 in human breast epithelial cells and breast tumor cells.

Human cytochromes P450 1A1 (CYP1A1) and P450 1B1 (CYP1B1) catalyze the metabolic activation of a number of procarcinogens and the hydroxylation of 17beta-estradiol (E2) at the C-2 and C-4 positions, respectively. The aromatic hydrocarbon receptor (AhR) agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) has a marked effect on estrogen metabolism in MCF-7 breast-tumor cells by induction of these ...

متن کامل

Cytochrome P450-mediated metabolism of estrogens and its regulation in human.

Estrogens are eliminated from the body by metabolic conversion to estrogenically inactive metabolites that are excreted in the urine and/or feces. The first step in the metabolism of estrogens is the hydroxylation catalyzed by cytochrome P450 (CYP) enzymes. Since most CYP isoforms are abundantly expressed in liver, the metabolism of estrogens mainly occurs in the liver. A major metabolite of es...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular pharmacology

دوره 84 3  شماره 

صفحات  -

تاریخ انتشار 2013