Surface characterization of titanium-based implant materials.

نویسندگان

  • H E Placko
  • S Mishra
  • J J Weimer
  • L C Lucas
چکیده

This study examined the effects of different treatments (polished, electropolished, and grit-blasted) on the surface morphology and chemistry of commercially pure titanium and titanium-6% aluminum-4% vanadium. The structure and composition of the surfaces were evaluated using scanning electron microscopy, atomic force microscopy, energy dispersive spectroscopy, Auger microprobe analysis, and x-ray photoelectron spectroscopy. Surface roughness values at large scales were nearly identical for grit-blasted and electropolished samples, while at smaller scales, electropolished and polished samples had nearly identical quantitative roughness values. The surface oxide compositions were found to be primarily titanium dioxide on both materials for all surface treatments. No vanadium was seen with either x-ray photoelectron spectroscopy or Auger microprobe analysis for the alloy, indicating a possible surface depletion. Calcium was present on the grit-blasted samples, and calcium and chlorine were detected on the electropolished samples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CORROSION BEHAVIOR OF BIOACTIVATED TITANIUM DENTAL IMPLANT USING DIFFERENT CHEMICAL METHODS

At the past, damaged tissue was removed from the body of patients. But now tissue regeneration using scaffolds and implants are used to repair the damaged tissue and organs. Besides of the mechanical properties of metallic biomaterials, they suffer from bioinertness. Using some surface treatment techniques, the bioactivity and also corrosion resistance of titanium implants could be improved. In...

متن کامل

Ion-Doped Silicate Bioceramic Coating of Ti-Based Implant

Titanium and its alloy are known as important load-bearing biomaterials. The major drawbacks of these metals are fibrous formation and low corrosion rate after implantation. The surface modification of biomedical implants through various methods such as plasma spray improves their osseointegration and clinical lifetime. Different materials have been already used as coatings on biomedical implan...

متن کامل

The biomimetic apatite-cefalotin coatings on modified titanium.

Dental implant failure often occurs due to oral bacterial infection. The aim of this study was to demonstrate that antibiotic efficacy could be enhanced with modified titanium. First, the titanium was modified by anodization and heat-treatment. Then, a biomimetic coating process was completed in two steps. Surface characterization was performed with scanning electron microscopy, energy dispersi...

متن کامل

Surface Characterization of Titanium Based Dental Implants

The study of dental implant surfaces is relevant in order to better understand the interaction of the titanium surface and the surrounding tissues. Clinical success is achieved not only because of implant material but also because of other properties as implant design, surface treatment and quality. In this work, we report a detailed surface investigation of three major Brazilian made implants ...

متن کامل

Synthesis of new antibacterial composite coating for titanium based on highly ordered nanoporous silica and silver nanoparticles.

Infection is the most common factor that leads to dental titanium implant failure. Antibacterial implant surfaces based on nano-scale modifications of the titanium appear as an attractive strategy for control of peri-implantitis. In the present work, the preparation and antibacterial properties of a novel composite coating for titanium based on nanoporous silica and silver nanoparticles are pre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The International journal of oral & maxillofacial implants

دوره 15 3  شماره 

صفحات  -

تاریخ انتشار 2000