Fluorescence measurements on the E.coli DNA polymerase clamp loader: implications for conformational changes during ATP and clamp binding.
نویسندگان
چکیده
Sliding clamps are ring-shaped proteins that tether DNA polymerases to their templates during processive DNA replication. The action of ATP-dependent clamp loader complexes is required to open the circular clamps and to load them onto DNA. The crystal structure of the pentameric clamp loader complex from Escherichia coli (the gamma complex), determined in the absence of nucleotides, revealed a highly asymmetric and extended form of the clamp loader. Consideration of this structure suggested that a compact and more symmetrical inactive form may predominate in solution in the absence of crystal packing forces. This model has the N-terminal domains of the delta and delta' subunits of the clamp loader close to each other in the inactive state, with the clamp loader opening in a crab-claw-like fashion upon ATP-binding. We have used fluorescence resonance energy transfer (FRET) to investigate the structural changes in the E.coli clamp loader complex that result from ATP-binding and interactions between the clamp loader and the beta clamp. FRET measurements using fluorophores placed in the N-terminal domains of the delta and delta' subunits indicate that the distances between these subunits in solution are consistent with the previously crystallized extended form of the clamp loader. Furthermore, the addition of nucleotide and clamp to the labeled clamp loader does not appreciably alter these FRET distances. Our results suggest that the changes that occur in the relative positioning of the delta and delta' subunits when ATP binds to and activates the complex are subtle, and that crab-claw-like movements are not a significant component of the clamp loader mechanism.
منابع مشابه
The Escherichia coli Clamp Loader Can Actively Pry Open the β-Sliding Clamp*
Clamp loaders load ring-shaped sliding clamps onto DNA. Once loaded onto DNA, sliding clamps bind to DNA polymerases to increase the processivity of DNA synthesis. To load clamps onto DNA, an open clamp loader-clamp complex must form. An unresolved question is whether clamp loaders capture clamps that have transiently opened or whether clamp loaders bind closed clamps and actively open clamps. ...
متن کاملThe ATP sites of AAA+ clamp loaders work together as a switch to assemble clamps on DNA.
Clamp loaders belong to a family of proteins known as ATPases associated with various cellular activities (AAA+). These proteins utilize the energy from ATP binding and hydrolysis to perform cellular functions. The clamp loader is required to load the clamp onto DNA for use by DNA polymerases to increase processivity. ATP binding and hydrolysis are coordinated by several key residues, including...
متن کاملThe β sliding clamp closes around DNA prior to release by the Escherichia coli clamp loader γ complex.
Escherichia coli γ complex clamp loader functions to load the β sliding clamp onto sites of DNA replication and repair. The clamp loader uses the energy of ATP binding and hydrolysis to drive conformational changes allowing for β binding and opening, DNA binding, and then release of the β·DNA complex. Although much work has been done studying the sliding clamp and clamp loader mechanism, kineti...
متن کاملLoading Dynamics of a Sliding DNA Clamp**
Sliding DNA clamps are loaded at a ss/dsDNA junction by a clamp loader that depends on ATP binding for clamp opening. Sequential ATP hydrolysis results in closure of the clamp so that it completely encircles and diffuses on dsDNA. We followed events during loading of an E. coli β clamp in real time by using single-molecule FRET (smFRET). Three successive FRET states were retained for 0.3 s, 0.7...
متن کاملThe internal workings of a DNA polymerase clamp-loading machine.
Replicative DNA polymerases are multiprotein machines that are tethered to DNA during chain extension by sliding clamp proteins. The clamps are designed to encircle DNA completely, and they are manipulated rapidly onto DNA by the ATP-dependent activity of a clamp loader. We outline the detailed mechanism of gamma complex, a five-protein clamp loader that is part of the Escherichia coli replicas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of molecular biology
دوره 336 5 شماره
صفحات -
تاریخ انتشار 2004