A Meshless Collocation Method Based on the Differential Reproducing Kernel Approximation
نویسندگان
چکیده
A differential reproducing kernel (DRK) approximation-based collocation method is developed for solving ordinary and partial differential equations governing the oneand two-dimensional problems of elastic bodies, respectively. In the conventional reproducing kernel (RK) approximation, the shape functions for the derivatives of RK approximants are determined by directly differentiating the RK approximants, and this is very time-consuming, especially for the calculations of their higher-order derivatives. Contrary to the previous differentiation manipulation, we construct a set of differential reproducing conditions to determine the shape functions for the derivatives of RK approximants. A meshless collocation method based on the present DRK approximation is developed and applied to the analysis of one-dimensional problems of elastic bars, two-dimensional potential problems, and plane elasticity problems of elastic solids to validate its accuracy and find the rate of convergence. It is shown that the present method is indeed a fully meshless approach with excellent accuracy and fast convergence rate.
منابع مشابه
The combined reproducing kernel method and Taylor series for solving nonlinear Volterra-Fredholm integro-differential equations
In this letter, the numerical scheme of nonlinear Volterra-Fredholm integro-differential equations is proposed in a reproducing kernel Hilbert space (RKHS). The method is constructed based on the reproducing kernel properties in which the initial condition of the problem is satised. The nonlinear terms are replaced by its Taylor series. In this technique, the nonlinear Volterra-Fredholm integro...
متن کاملA method based on the meshless approach for singularly perturbed differential-difference equations with Boundary layers
In this paper, an effective procedure based on coordinate stretching and radial basis functions (RBFs) collocation method is applied to solve singularly perturbed differential-difference equations with layer behavior. It is well known that if the boundary layer is very small, for good resolution of the numerical solution at least one of the collocation points must lie in the boundary layer. In ...
متن کاملA Note on Solving Prandtl's Integro-Differential Equation
A simple method for solving Prandtl's integro-differential equation is proposed based on a new reproducing kernel space. Using a transformation and modifying the traditional reproducing kernel method, the singular term is removed and the analytical representation of the exact solution is obtained in the form of series in the new reproducing kernel space. Compared with known investigations, its ...
متن کاملA Kernel-based Collocation Method for Elliptic Partial Differential Equations with Random Coefficients
This paper is an extension of previous work where we laid the foundation for the kernel-based collocation solution of stochastic partial differential equations (SPDEs), but dealt only with the simpler problem of right-hand-side Gaussian noises. In the present paper we show that kernel-based collocation methods can be used to approximate the solutions of high-dimensional elliptic partial differe...
متن کاملKernel-based Collocation Methods versus Galerkin Finite Element Methods for Approximating Elliptic Stochastic Partial Differential Equations
We compare a kernel-based collocation method (meshfree approximation method) with a Galerkin finite element method for solving elliptic stochastic partial differential equations driven by Gaussian noise. The kernel-based collocation solution is a linear combination of reproducing kernels obtained from related differential and boundary operators centered at chosen collocation points. Its random ...
متن کامل