Targeting cancer using KAT inhibitors to mimic lethal knockouts
نویسندگان
چکیده
Two opposing enzyme classes regulate fundamental elements of genome maintenance, gene regulation and metabolism, either through addition of an acetyl moiety by histone acetyltransferases (HATs) or its removal by histone de-acetyltransferases (HDAC), and are exciting targets for drug development. Importantly, dysfunctional acetylation has been implicated in numerous diseases, including cancer. Within the HAT superfamily the MYST family holds particular interest, as its members are directly involved in the DNA damage response and repair pathways and crucially, several members have been shown to be down-regulated in common cancers (such as breast and prostate). In the present study we focus on the development of lysine (K) acetyltransferase inhibitors (KATi) targeting the MYST family member Tip60 (Kat5), an essential protein, designed or discovered through screening libraries. Importantly, Tip60 has been demonstrated to be significantly down-regulated in many cancers which urgently require new treatment options. We highlight current and future efforts employing these KATi as cancer treatments and their ability to synergize and enhance current cancer treatments. We investigate the different methods of KATi production or discovery, their mechanisms and their validation models. Importantly, the utility of KATi is based on a key concept: using KATi to abrogate the activity of an already down-regulated essential protein (effectively creating a lethal knockout) provides another innovative mechanism for targeting cancer cells, while significantly minimizing any off-target effects to normal cells. This approach, combined with the rapidly developing interest in KATi, suggests that KATi have a bright future for providing truly personalized therapies.
منابع مشابه
Investigating the role of signaling pathways and cancer stem cells in esophageal cancer with a therapeutic approach
Esophageal cancer (EC) is the sixth main cause of cancer death worldwide. Important genes associated with esophageal cancer include FOXO3, AKT, and GSK3β. Excessive FOXO3 expression inhibits the proliferation of cancer cells. The expression of AKT is involved in controlling cell growth in tumors. GSK3β activity is higher in cancer tissues. Given the effective role of cancer stem cells (CSCs) in...
متن کاملCombined Anti-Angiogenic Therapy Targeting PDGF and VEGF Receptors Lowers the Interstitial Fluid Pressure in a Murine Experimental Carcinoma
Elevation of the interstitial fluid pressure (IFP) of carcinoma is an obstacle in treatment of tumors by chemotherapy and correlates with poor drug uptake. Previous studies have shown that treatment with inhibitors of platelet-derived growth factor (PDGF) or vascular endothelial growth factor (VEGF) signaling lowers the IFP of tumors and improve chemotherapy. In this study, we investigated whet...
متن کاملTargeting kynurenine aminotransferase II in psychiatric diseases: promising effects of an orally active enzyme inhibitor.
Increased brain levels of the tryptophan metabolite kynurenic acid (KYNA) have been linked to cognitive dysfunctions in schizophrenia and other psychiatric diseases. In the rat, local inhibition of kynurenine aminotransferase II (KAT II), the enzyme responsible for the neosynthesis of readily mobilizable KYNA in the brain, leads to a prompt reduction in extracellular KYNA levels, and secondaril...
متن کاملPI3K and mTOR inhibitor, NVP-BEZ235, is more toxic than X-rays in prostate cancer cells
Background: Radiotherapy and adjuvant androgen deprivation therapy have historically been the first treatment choices for prostate cancer but treatment resistance often limits the capacity to effectively manage the disease. Therefore, alternative therapeutic approaches are needed. Here, the efficacies of radiotherapy and targeting the pro-survival cell signaling components epidermal growth fact...
متن کاملTargeting p300 Addiction in CBP-Deficient Cancers Causes Synthetic Lethality by Apoptotic Cell Death due to Abrogation of MYC Expression.
UNLABELLED Loss-of-function mutations in the CBP/CREBBP gene, which encodes a histone acetyltransferase (HAT), are present in a variety of human tumors, including lung, bladder, gastric, and hematopoietic cancers. Consequently, development of a molecular targeting method capable of specifically killing CBP-deficient cancer cells would greatly improve cancer therapy. Functional screening of synt...
متن کامل