On Dependency Pair Method for Proving Termination of Higher-Order Rewrite Systems
نویسندگان
چکیده
This paper explores how to extend the dependency pair technique for proving termination of higher-order rewrite systems. In the first order case, the termination of term rewriting systems are proved by showing the non-existence of an infinite R-chain of the dependency pairs. However, the termination and the non-existence of an infinite R-chain do not coincide in the higher-order case. We introduce a new notion of dependency forest that characterize infinite reductions and infinite Rchains, and show that the termination property of higher-order rewrite systems R can be checked by showing the non-existence of an infinite R-chain, if R is strongly linear or non-nested.
منابع مشابه
Argument filterings and usable rules in higher-order rewrite systems
The static dependency pair method is a method for proving the termination of higher-order rewrite systems à la Nipkow. It combines the dependency pair method introduced for first-order rewrite systems with the notion of strong computability introduced for typed λ-calculi. Argument filterings and usable rules are two important methods of the dependency pair framework used by current state-of-the...
متن کاملStatic Dependency Pair Method in Rewriting Systems for Functional Programs with Product, Algebraic Data, and ML-Polymorphic Types
For simply-typed term rewriting systems (STRSs) and higher-order rewrite systems (HRSs) à la Nipkow, we proposed a method for proving termination, namely the static dependency pair method. The method combines the dependency pair method introduced for first-order rewrite systems with the notion of strong computability introduced for typed λ-calculi. This method analyzes a static recursive struct...
متن کاملProving and Disproving Termination of Higher-Order Functions
The dependency pair technique is a powerful modular method for automated termination proofs of term rewrite systems (TRSs). We present two important extensions of this technique: First, we show how to prove termination of higher-order functions using dependency pairs. To this end, the dependency pair technique is extended to handle (untyped) applicative TRSs. Second, we introduce a method to pr...
متن کاملStatic Dependency Pair Method Based on Strong Computability for Higher-Order Rewrite Systems
Higher-order rewrite systems (HRSs) and simply-typed term rewriting systems (STRSs) are computational models of functional programs. We recently proposed an extremely powerful method, the static dependency pair method, which is based on the notion of strong computability, in order to prove termination in STRSs. In this paper, we extend the method to HRSs. Since HRSs include λ-abstraction but ST...
متن کاملApproximating Dependency Graphs Using Tree Automata Techniques
The dependency pair method of Arts and Giesl is the most powerful technique for proving termination of term rewrite systems automatically. We show that the method can be improved by using tree automata techniques to obtain better approximations of the dependency graph. This graph determines the ordering constraints that need to be solved in order to conclude termination. We further show that by...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEICE Transactions
دوره 88-D شماره
صفحات -
تاریخ انتشار 2005