Loss of p53 enhances NF-κB-dependent lamellipodia formation.
نویسندگان
چکیده
Tumor suppressor p53 prevents tumorigenesis and tumor growth by suppressing the activation of several transcription factors, including nuclear factor-κB (NF-κB) and STAT3. On the other hand, p53 stimulates actin cytoskeleton remodeling and integrin-related signaling cascades. Here, we examined the p53-mediated link between regulation of the actin cytoskeleton and activation of NF-κB and STAT3 in MCF-7 cells and mouse embryonic fibroblasts (MEFs). In the absence of p53, STAT3 was constitutively activated. This activation was attenuated by depleting the expression of p65, a component of NF-κB. Integrin β3 expression and lamellipodia formation were also downregulated by NF-κB depletion. Inhibition of integrin αvβ3, Rac1 or Arp2/3, which diminished lamellipodia formation, suppressed STAT3 activation induced by p53 depletion. These results suggest that loss of p53 leads to STAT3 activation via NF-κB-dependent lamellipodia formation. Our study proposes a novel role for p53 in modulating the actin cytoskeleton through suppression of NF-κB, which restricts STAT3 activation.
منابع مشابه
Class I histone deacetylases regulate p53/NF-κB crosstalk in cancer cells.
The transcription factors NF-κB and p53 as well as their crosstalk determine the fate of tumor cells upon therapeutic interventions. Replicative stress and cytokines promote signaling cascades that lead to the co-regulation of p53 and NF-κB. Consequently, nuclear p53/NF-κB signaling complexes activate NF-κB-dependent survival genes. The 18 histone deacetylases (HDACs) are epigenetic modulators ...
متن کاملPHLPP2 suppresses the NF-κB pathway by inactivating IKKβ kinase
The NF-κB growth pathway is constitutively activated in many cancers but its activation mechanism is unclear in most cases. We show that PHLPP2 interacts with IKKβ kinase, decreases its phosphorylation and the subsequent NF-κB activation in cancer cells. PHLPP2 is progressively lost in glioma and colorectal cancer and acts as a bona fide tumor suppressor, depending on IKKβ expression in cells. ...
متن کاملA Compensatory Role of NF-κB to p53 in Response to 5-FU–Based Chemotherapy for Gastric Cancer Cell Lines
Despite of remarkable improvement of postoperative 5-FU-based adjuvant chemotherapy, the relapse rate of gastric cancer patients who undergo curative resection followed by the adjuvant chemotherapy remains substantial. Therefore, it is important to identify prediction markers for the chemotherapeutic efficacy of 5-FU. We recently identified NF-κB as a candidate relapse prediction biomarker in g...
متن کاملSumoylation of HDAC2 promotes NF-κB-dependent gene expression
The transcription factor nuclear factor-κB (NF-κB) is crucial for the maintenance of homeostasis. It is incompletely understood how nuclear NF-κB and the crosstalk of NF-κB with other transcription factors are controlled. Here, we demonstrate that the epigenetic regulator histone deacetylase 2 (HDAC2) activates NF-κB in transformed and primary cells. This function depends on both, the catalytic...
متن کاملp53 controls colorectal cancer cell invasion by inhibiting the NF-κB-mediated activation of Fascin
p53 mutation is known to contribute to cancer progression. Fascin is an actin-bundling protein and has been recently identified to promote cancer cell migration and invasion through its role in formation of cellular protrusions such as filopodia and invadopodia. However, the relationship between p53 and Fascin is not understood. Here, we have found a new link between them. In colorectal adenoca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cellular physiology
دوره 229 6 شماره
صفحات -
تاریخ انتشار 2014