In silico bone mechanobiology: modeling a multifaceted biological system
نویسندگان
چکیده
Mechanobiology, the study of the influence of mechanical loads on biological processes through signaling to cells, is fundamental to the inherent ability of bone tissue to adapt its structure in response to mechanical stimulation. The immense contribution of computational modeling to the nascent field of bone mechanobiology is indisputable, having aided in the interpretation of experimental findings and identified new avenues of inquiry. Indeed, advances in computational modeling have spurred the development of this field, shedding new light on problems ranging from the mechanical response to loading by individual cells to tissue differentiation during events such as fracture healing. To date, in silico bone mechanobiology has generally taken a reductive approach in attempting to answer discrete biological research questions, with research in the field broadly separated into two streams: (1) mechanoregulation algorithms for predicting mechanobiological changes to bone tissue and (2) models investigating cell mechanobiology. Future models will likely take advantage of advances in computational power and techniques, allowing multiscale and multiphysics modeling to tie the many separate but related biological responses to loading together as part of a larger systems biology approach to shed further light on bone mechanobiology. Finally, although the ever-increasing complexity of computational mechanobiology models will inevitably move the field toward patient-specific models in the clinic, the determination of the context in which they can be used safely for clinical purpose will still require an extensive combination of computational and experimental techniques applied to in vitro and in vivo applications. WIREs Syst Biol Med 2016, 8:485-505. doi: 10.1002/wsbm.1356 For further resources related to this article, please visit the WIREs website.
منابع مشابه
Biphasic constitutive laws for biological interface evolution.
A model of tissue differentiation at the bone-implant interface is proposed. The basic hypothesis of the model is that the mechanical environment determines the tissue differentiation. The stimulus chosen is related to the bone-implant micromotions. Equations governing the evolution of the interfacial tissue are proposed and combined with a finite element code to determine the evolution of the ...
متن کاملThe mechanobiology of cancellous bone structural adaptation.
The distinguishing morphological feature of cancellous bone is its high level of porosity relative to cortical bone. This porosity leads to more free surfaces and thus to more of the cellular constituents that inhabit those surfaces. As a result, cancellous bone is often more metabolically active and responsive to stimuli than cortical bone. This extends to the relationship between cancellous b...
متن کاملSubstrate stiffness and oxygen availability as regulators of mesenchymal stem cell differentiation within a mechanically loaded bone chamber.
Mechanical stimuli such as tissue deformation and fluid flow are often implicated as regulators of mesenchymal stem cell (MSC) differentiation during regenerative events in vivo. However, in vitro studies have identified several other physical and biochemical environmental cues, such as substrate stiffness and oxygen availability, as key regulators of stem cell fate. Hypotheses for how MSC diff...
متن کاملSimulation of fracture healing incorporating mechanoregulation of tissue differentiation and dispersal/proliferation of cells.
Modelling the course of healing of a long bone subjected to loading has been the subject of several investigations. These have succeeded in predicting the differentiation of tissues in the callus in response to a static mechanical load and the diffusion of biological factors. In this paper an approach is presented which includes both mechanoregulation of tissue differentiation and the diffusion...
متن کاملHigh-resolution 3D imaging of osteocytes and computational modelling in mechanobiology: insights on bone development, ageing, health and disease.
Osteocytes are involved in mechanosensation and mechanotransduction in bone and hence, are key to bone adaptation in response to development, ageing and disease. Thus, detailed knowledge of the three-dimensional (3D) structure of the osteocyte network (ON) and the surrounding lacuno-canalicular network (LCN) is essential. Enhanced understanding of the ON&LCN will contribute to a better understa...
متن کامل