Functional coherence in domain interaction networks
نویسندگان
چکیده
MOTIVATION Extracting functional information from protein-protein interactions (PPI) poses significant challenges arising from the noisy, incomplete, generic and static nature of data obtained from high-throughput screening. Typical proteins are composed of multiple domains, often regarded as their primary functional and structural units. Motivated by these considerations, domain-domain interactions (DDI) for network-based analyses have received significant recent attention. This article performs a formal comparative investigation of the relationship between functional coherence and topological proximity in PPI and DDI networks. Our investigation provides the necessary basis for continued and focused investigation of DDIs as abstractions for functional characterization and modularization of networks. RESULTS We investigate the problem of assessing the functional coherence of two biomolecules (or segments thereof) in a formal framework. We establish essential attributes of admissible measures of functional coherence, and demonstrate that existing, well-accepted measures are ill-suited to comparative analyses involving different entities (i.e. domains versus proteins). We propose a statistically motivated functional similarity measure that takes into account functional specificity as well as the distribution of functional attributes across entity groups to assess functional similarity in a statistically meaningful and biologically interpretable manner. Results on diverse data, including high-throughput and computationally predicted PPIs, as well as structural and computationally inferred DDIs for different organisms show that: (i) the relationship between functional similarity and network proximity is captured in a much more (biologically) intuitive manner by our measure, compared to existing measures and (ii) network proximity and functional similarity are significantly more correlated in DDI networks than in PPI networks, and that structurally determined DDIs provide better functional relevance as compared to computationally inferred DDIs.
منابع مشابه
Prediction of Protein Sub-Mitochondria Locations Using Protein Interaction Networks
Background: Prediction of the protein localization is among the most important issues in the bioinformatics that is used for the prediction of the proteins in the cells and organelles such as mitochondria. In this study, several machine learning algorithms are applied for the prediction of the intracellular protein locations. These algorithms use the features extracted from pro...
متن کاملFunctional coherence of insula networks is associated with externalizing behavior.
The externalizing spectrum encompasses a range of maladaptive behaviors, including substance-use problems, impulsivity, and aggression. Although previous literature has linked externalizing behaviors with prefrontal and amygdala abnormalities, recent studies suggest insula functionality is implicated. This study investigated the relation between insula functional coherence and externalizing in ...
متن کاملEffects of T208E activating mutation on MARK2 protein structure and dynamics: Modeling and simulation
Microtubule Affinity-Regulating Kinase 2 (MARK2) protein has a substantial role in regulation of vital cellular processes like induction of polarity, regulation of cell junctions, cytoskeleton structure and cell differentiation. The abnormal function of this protein has been associated with a number of pathological conditions like Alzheimer disease, autism, several carcinomas and development of...
متن کاملA Novel Image Denoising Method Based on Incoherent Dictionary Learning and Domain Adaptation Technique
In this paper, a new method for image denoising based on incoherent dictionary learning and domain transfer technique is proposed. The idea of using sparse representation concept is one of the most interesting areas for researchers. The goal of sparse coding is to approximately model the input data as a weighted linear combination of a small number of basis vectors. Two characteristics should b...
متن کاملWeighted mutual information analysis substantially improves domain-based functional network models
MOTIVATION Functional protein-protein interaction (PPI) networks elucidate molecular pathways underlying complex phenotypes, including those of human diseases. Extrapolation of domain-domain interactions (DDIs) from known PPIs is a major domain-based method for inferring functional PPI networks. However, the protein domain is a functional unit of the protein. Therefore, we should be able to eff...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioinformatics
دوره 24 16 شماره
صفحات -
تاریخ انتشار 2008