Molecular scale assessment of methylarsenic sorption on aluminum oxide.

نویسندگان

  • Masayuki Shimizu
  • Matthew Ginder-Vogel
  • Sanjai J Parikh
  • Donald L Sparks
چکیده

Methylated forms of arsenic (As), monomethylarsenate (MMA) and dimethylarsenate (DMA), have historically been used as herbicides and pesticides. Because of their large application to agriculture fields and the toxicity of MMA and DMA, the sorption of methylated As to soil constituents requires investigation. MMA and DMA sorption on amorphous aluminum oxide (AAO) was investigated using both macroscopic batch sorption kinetics and molecular scale extended X-ray absorption fine structure (EXAFS) and Fourier transform infrared (FTIR) spectroscopic techniques. Sorption isotherm studies revealed sorption maxima of 0.183, 0.145, and 0.056 mmol As/mmol Al for arsenate (As(V)), MMA, and DMA, respectively. In the sorption kinetics studies, 100% of added As(V) was sorbed within 5 min, while 78% and 15% of added MMA and DMA were sorbed, respectively. Desorption experiments, using phosphate as a desorbing agent, resulted in 30% release of absorbed As(V), while 48% and 62% of absorbed MMA and DMA, respectively, were released. FTIR and EXAFS studies revealed that MMA and DMA formed mainly bidentate binuclear complexes with AAO. On the basis of these results, it is proposed that increasing methyl group substitution results in decreased As sorption and increased As desorption on AAO.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Methylarsenic Sorption and Speciation Mechanisms in Natural Systems

Arsenic (As) originates in many rocks and minerals throughout the world. Natural phenomena, such as weathering and biological activities, along with industrial activities and agricultural activities are responsible for As introduction to the environment. The most predominate oxidation states for inorganic As species are arsenate As (H3AsO4) and arsenite As (H3AsO3). In addition to inorganic for...

متن کامل

Competitive sorption of Ni and Zn at the aluminum oxide/water interface: an XAFS study

Trace metals (e.g. Ni, Zn) leached from industrial and agricultural processes are often simultaneously present in contaminated soils and sediments. Their mobility, bioavailability, and ecotoxicity are affected by sorption and cosorption at mineral/solution interfaces. Cosorption of trace metals has been investigated at the macroscopic level, but there is not a clear understanding of the molecul...

متن کامل

Multiscale assessment of methylarsenic reactivity in soil. 1. Sorption and desorption on soils.

Methylated forms of arsenic (As), monomethylarsenate (MMA), and dimethylarsenate (DMA) have historically been used as herbicides and pesticides. Because of their large application to agriculture fields and the toxicity of MMA and DMA, the persistency of these compounds in the environment is of great concern. MMA and DMA sorption and desorption were investigated in soils, varying in mineralogica...

متن کامل

Modeling Pb sorption to microporous amorphous oxides as discrete particles and coatings.

Hydrous amorphous Al (HAO), Fe (HFO), and Mn (HMO) oxides are ubiquitous in the subsurface as both discrete particles and coatings and exhibit a high affinity for heavy metal contaminants. To assess risks associated with heavy metals, such as Pb, to the surrounding environment and manage remedial activities requires accurate mechanistic models with well-defined transport parameters that represe...

متن کامل

Mechanism and kinetics of aluminum dissolution during copper sorption by acidity paddy soil in South China.

Soil aggregates were prepared from a bulk soil collected from paddy soil in the Taihu Lake region and aluminum (Al) dissolution, solution pH changes during copper (Cu(2+)) sorption were investigated with static sorption and magnetic stirring. Kinetics of Cu(2+) sorption and Al dissolution were also studied by magnetic stirring method. No Al dissolution was observed until Cu(2+) sorption was gre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental science & technology

دوره 44 2  شماره 

صفحات  -

تاریخ انتشار 2010