Modulation of shark prey capture kinematics in response to sensory deprivation.
نویسندگان
چکیده
The ability of predators to modulate prey capture in response to the size, location, and behavior of prey is critical to successful feeding on a variety of prey types. Modulating in response to changes in sensory information may be critical to successful foraging in a variety of environments. Three shark species with different feeding morphologies and behaviors were filmed using high-speed videography while capturing live prey: the ram-feeding blacktip shark, the ram-biting bonnethead, and the suction-feeding nurse shark. Sharks were examined intact and after sensory information was blocked (olfaction, vision, mechanoreception, and electroreception, alone and in combination), to elucidate the contribution of the senses to the kinematics of prey capture. In response to sensory deprivation, the blacktip shark demonstrated the greatest amount of modulation, followed by the nurse shark. In the absence of olfaction, blacktip sharks open the jaws slowly, suggestive of less motivation. Without lateral line cues, blacktip sharks capture prey from greater horizontal angles using increased ram. When visual cues are absent, blacktip sharks elevate the head earlier and to a greater degree, allowing them to overcome imprecise position of the prey relative to the mouth, and capture prey using decreased ram, while suction remains unchanged. When visual cues are absent, nurse sharks open the mouth wider, extend the labial cartilages further, and increase suction while simultaneously decreasing ram. Unlike some bony fish, neither species switches feeding modalities (i.e. from ram to suction or vice versa). Bonnetheads failed to open the mouth when electrosensory cues were blocked, but otherwise little to no modulation was found in this species. These results suggest that prey capture may be less plastic in elasmobranchs than in bony fishes, possibly due to anatomical differences, and that the ability to modulate feeding kinematics in response to available sensory information varies by species, rather than by feeding modality.
منابع مشابه
Effects of prey size and mobility on prey-capture kinematics in leopard sharks triakis semifasciata
Recent work on teleosts suggests that attack behaviors or kinematics may be modified by a predator on the basis of the size of the prey or the ability of the prey to sense predators and escape capture (elusivity). Sharks are generally presumed to be highly visual predators; thus, it is reasonable to expect that they might also be capable of such behavioral modulation. In this study, I investiga...
متن کاملPiscivorous cyprinid fish modulates suction feeding kinematics to capture elusive prey.
Previous studies have shown that evasive prey generally elicit a different kinematical pattern of prey capture from suction feeding fish compared to non-evasive types of prey. However, no evidence exists that predatory fish can modulate their prey capture kinematics in response to whether or not an elusive prey performs an escape response. Here, we analyse prey capture kinematics of a specialis...
متن کاملModulation of prey capture kinematics in the cheeklined wrasse Oxycheilinus digrammus (Teleostei: Labridae).
The ability to modulate prey capture behaviors is of interest to organismal biologists as it suggests that predators can perceive features of the prey and select suitable behaviors from an available repertoire to successfully capture the item. Thus, behavior may be as important a trait as morphology in determining an organism's diet. Using high-speed video, we measured prey capture kinematics i...
متن کاملModulation in the feeding prey capture of the ant-lion, Myrmeleon crudelis.
Ant-lions are pit-building larvae (Neuroptera: Myrmeleontidae), which possess relatively large mandibles used for catching and consuming prey. Few studies involving terrestrial arthropod larva have investigated prey capture behavior and kinematics and no study has shown modulation of strike kinematics. We examined feeding kinematics of the ant-lion, Myrmeleon crudelis, using high-speed video to...
متن کاملEffect of sensory deprivation and Locus Coeruleus (LC) electrical stimulation on the response properties of layer IV barrel cortex neurons in male rats
Introduction: Barrel cortex of rodents is responsible for sensory information processing from muzzle whiskers. Locus coeruleus (LC) as the main source of norepinephrine (NE) in the cortex, is effective on the sensory information processing. Methods: Rats were divided to 2 groups. One group underwent sensory deprivation (P4) and the other group served as control and did not undergo sensory d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Zoology
دوره 120 شماره
صفحات -
تاریخ انتشار 2017