Convergence analysis of instrumental variable recursive subspace identification algorithm∗
نویسندگان
چکیده
The convergence properties of recently developed recursive subspace identification methods are investigated in this paper. The algorithms operate on the basis of instrumental variable (IV) versions of the propagator method for signal subspace estimation. It is proved that, under suitable conditions on the input signal and the system, the considered recursive subspace identification algorithms converge to a consistent estimate of the propagator and, by extension, to the state-space system matrices.
منابع مشابه
Convergence analysis of instrumental variable recursive subspace identification algorithms
The convergence properties of a recently developed recursive subspace identification algorithm are investigated in this paper. The algorithm operates on the basis of an extended instrumental variable (EIV) version of the propagator method for signal subspace estimation. It is proved that, under weak conditions on the input signal and the identified system, the considered MOESP class of recursiv...
متن کاملRecursive subspace identification based on instrumental variable unconstrained quadratic optimization
The problem of the recursive formulation of the MOESP class of subspace identification algorithms is considered and two novel instrumental variable approaches are introduced. The first one leads to an RLS-like implementation, the second to a gradient type iteration. The relative merits of both approaches are analysed and discussed, while simulation results are used to compare their performance ...
متن کاملRecursive System Identification
In this paper a recursive instrumental variable (IV) based subspace identiication algorithm is proposed. The basic idea of the algorithm is to utilize the close relationship with sensor array signal processing. Utilizing this relationship, an IV based subspace tracking algorithm originally developed for direction of arrival tracking is applied to track the subspace spanned by the observability ...
متن کاملRecursive subspace identification of linear and non-linear Wiener state-space models
The problem of MIMO recursive identiication is considered and analyzed within the framework of subspace-based state space system identiication (4SID). With respect to previous contributions to this area, in this paper the use of recent signal processing algorithms for the recursive update of the SVD is proposed. To accommodate for arbitrary correlation of the disturbances, an instrumental varia...
متن کاملBi-iteration recursive instrumental variable subspace tracking and adaptive filtering
In this paper, we propose a class of fast sequential bi-iteration singular value (Bi-SVD) subspace tracking algorithms for adaptive eigendecomposition of the cross covariance matrix in the recursive instrumental variable (RIV) method of system identification. These algorithms can be used for RIV subspace processing of signals in unknown correlated Gaussian noise. Realizations with O(Nr) and O(N...
متن کامل