Knockdown of Myostatin Expression by RNAi Enhances Muscle Growth in Transgenic Sheep
نویسندگان
چکیده
Myostatin (MSTN) has been shown to be a negative regulator of skeletal muscle development and growth. MSTN dysfunction therefore offers a strategy for promoting animal growth performance in livestock production. In this study, we investigated the possibility of using RNAi-based technology to generate transgenic sheep with a double-muscle phenotype. A shRNA expression cassette targeting sheep MSTN was used to generate stable shRNA-expressing fibroblast clones. Transgenic sheep were further produced by somatic cell nuclear transfer (SCNT) technology. Five lambs developed to term and three live lambs were obtained. Integration of shRNA expression cassette in three live lambs was confirmed by PCR. RNase protection assay showed that the shRNAs targeting MSTN were expressed in muscle tissues of three transgenic sheep. MSTN expression was significantly inhibited in muscle tissues of transgenic sheep when compared with control sheep. Moreover, transgenic sheep showed a tendency to faster increase in body weight than control sheep. Histological analysis showed that myofiber diameter of transgenic sheep M17 were bigger than that of control sheep. Our findings demonstrate a promising approach to promoting muscle growth in livestock production.
منابع مشابه
Investigation of GDF8 Gene Promoter in Iranian Sheep
Myostatin is a growth factor belonging to the TGFß superfamily. TGFß growth factors are active in the regulation of embryonic development and in tissue homeostasis in adults. Myostatin is a growth factor controlling proliferation of myoblasts in embryonic development. Mutations in coding sequences of the bovine myostatin (GDF8) gene lead to muscle hyperplasia suggesting its inhibitory function ...
متن کاملThe Expression of Myogenin and Myostatin Genes in Baluchi Sheep
Myogenin gene (MYoG) affects the synthesis of muscle myofibrillar growth and increase of meat production. The myostatin (MSTN) gene is identified as a specific negative regulator of skeletal muscle growth. Reduction of the expression level of MSTN throughmutation in the sequence of this gene leads to an increase of myogenesis and regeneration of muscle cells during the postnatal growing period ...
متن کاملMicroRNA-Mediated Myostatin Silencing in Caprine Fetal Fibroblasts
Myostatin functions as a negative regulator of skeletal muscle growth by suppressing proliferation and differentiation of myoblasts. Dysfunction of the myostatin gene, either due to natural mutation or genetic manipulations such as knockout or knockdown, has been reported to increase muscle mass in mammalian species. RNA interference (RNAi) mediated by microRNAs (miRNAs) is a promising method f...
متن کاملSignals of Ezh2, Src, and Akt Involve in Myostatin-Pax7 Pathways Regulating the Myogenic Fate Determination during the Sheep Myoblast Proliferation and Differentiation
Myostatin and Pax7 have been well documented individually, however, the mechanism by which Myostatin regulates Pax7 is seldom reported. Here, based on muscle transcriptome analysis in Texel (Myostatin mutant) and Ujumqin (wild type) sheep across the five fetal stages, we constructed and examined the Myostatin-Pax7 pathways in muscle. Then we validated the signals by RNAi in the proliferating an...
متن کاملApplication of myostatin in sheep breeding programs: A review
Myostatin or growth and differentiation factor 8 (GDF8), has been known as the factor causing double muscling phenotypes in which a series of mutations make the myostatin protein inactive, hence disabling it to regulate the deposition of muscle fibre. This phenotype happens with high frequency in a breed of sheep known as the Texel. Quantitative trait loci (QTL) studies show that a portion of t...
متن کامل