Analysis of histone post translational modifications in primary monocyte derived macrophages using reverse phase × reverse phase chromatography in conjunction with porous graphitic carbon stationary phase

نویسندگان

  • Thomas C. Minshull
  • Joby Cole
  • David H. Dockrell
  • Robert C. Read
  • Mark J. Dickman
چکیده

A two dimensional-liquid chromatography (2D-LC) based approach was developed for the identification and quantification of histone post translational modifications in conjunction with mass spectrometry analysis. Using a bottom-up strategy, offline 2D-LC was developed using reverse phase chromatography. A porous graphitic carbon stationary phase in the first dimension and a C18 stationary phase in the second dimension interfaced with mass spectrometry was used to analyse global levels of histone post translational modifications in human primary monocyte-derived macrophages. The results demonstrated that 84 different histone peptide proteoforms, with modifications at 18 different sites including combinatorial marks were identified, representing an increase in the identification of histone peptides by 65% and 51% compared to two different 1D-LC approaches on the same mass spectrometer. The use of the porous graphitic stationary phase in the first dimension resulted in efficient separation of histone peptides across the gradient, with good resolution and is orthogonal to the online C18 reverse phase chromatography. Overall, more histone peptides were identified using the 2D-LC approach compared to conventional 1D-LC approaches. In addition, a bioinformatic pipeline was developed in-house to enable the high throughput efficient and accurate quantification of fractionated histone peptides. The automation of a section of the downstream analysis pipeline increased the throughput of the 2D-LC-MS/MS approach for the quantification of histone post translational modifications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nucleic acid separations using superficially porous silica particles

Ion pair reverse-phase liquid chromatography has been widely employed for nucleic acid separations. A wide range of alternative stationary phases have been utilised in conjunction with ion pair reverse-phase chromatography, including totally porous particles, non-porous particles, macroporous particles and monolithic stationary phases. In this study we have utilised superficially porous silica ...

متن کامل

Performance of 2-Amino Tetraphenyl Porphyrin as Stationary Phase in RP-HPLC of Amino Acids

The search for new stationary phases has been one of the predominant concerns in high performance liquid chromatography (HPLC) in order to achieve better resolutions, longer column lives, and reduce the time of analysis. A chromatographic packing for separation of underivatized amino acids (AAs) were prepared by dynamically coating 2-amino tetraphenyl prophyrin (atpp) on a C-18 reversed-pha...

متن کامل

Impairment of Macrophage Presenting Ability and Viability by Echinococcus granulosus Antigens

Background: Despite advances toward an improved understanding of the evasive mechanisms leading to the establishment of cystic echinococcosis, the discovery of specific immunosuppressive mechanisms and related factors are of great interest in the development of an immunotherapeutic approach. Objective: To elucidate immunosuppressive effects of bioactive factors contained in chromatographic frac...

متن کامل

Different Stationary Phase Selectivities and Morphologies for Intact Protein Separations

The central dogma of biology proposed that one gene encodes for one protein. We now know that this does not reflect reality. The human body has approximately 20,000 protein-encoding genes; each of these genes can encode more than one protein. Proteins expressed from a single gene can vary in terms of their post-translational modifications, which often regulate their function within the body. Un...

متن کامل

Genomic analysis of stationary-phase and exit in Saccharomyces cerevisiae: gene expression and identification of novel essential genes.

Most cells on earth exist in a quiescent state. In yeast, quiescence is induced by carbon starvation, and exit occurs when a carbon source becomes available. To understand how cells survive in, and exit from this state, mRNA abundance was examined using oligonucleotide-based microarrays and quantitative reverse transcription-polymerase chain reaction. Cells in stationary-phase cultures exhibite...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 1453  شماره 

صفحات  -

تاریخ انتشار 2016