5 N ov 2 01 4 A renormalisation group method . II . Approximation by local polynomials

نویسندگان

  • David C. Brydges
  • Gordon Slade
چکیده

This paper is the second in a series devoted to the development of a rigorous renormalisation group method for lattice field theories involving boson fields, fermion fields, or both. The method is set within a normed algebra N of functionals of the fields. In this paper, we develop a general method—localisation—to approximate an element of N by a local polynomial in the fields. From the point of view of the renormalisation group, the construction of the local polynomial corresponding to F ∈ N amounts to the extraction of the relevant and marginal parts of F . We prove estimates relating F and its corresponding local polynomial, in terms of the Tφ semi-norm introduced in part I of the series.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

N ov 2 01 4 A renormalisation group method . IV . Stability analysis

This paper is the fourth in a series devoted to the development of a rigorous renormalisation group method for lattice field theories involving boson fields, fermion fields, or both. The third paper in the series presents a perturbative analysis of a supersymmetric field theory which represents the continuous-time weakly self-avoiding walk on Zd. We now present an analysis of the relevant inter...

متن کامل

ar X iv : 1 61 1 . 01 35 5 v 1 [ m at h . FA ] 4 N ov 2 01 6 Disjointness preserving C 0 - semigroups and local operators on ordered Banach spaces

We generalize results concerning C0-semigroups on Banach lattices to a setting of ordered Banach spaces. We prove that the generator of a disjointness preserving C0-semigroup is local. Some basic properties of local operators are also given. We investigate cases where local operators generate local C0-semigroups, by using Taylor series or Yosida approximations. As norms we consider regular norm...

متن کامل

Solving Differential Equations by Using a Combination of the First Kind Chebyshev Polynomials and Adomian Decomposition Method

In this paper, we are going to solve a class of ordinary differential equations that its source term are rational functions. We obtain the best approximation of source term by Chebyshev polynomials of the first kind, then we solve the ordinary differential equations by using the Adomian decomposition method

متن کامل

Numerical solution of the spread of infectious diseases mathematical model based on shifted Bernstein polynomials

The Volterra delay integral equations have numerous applications in various branches of science, including biology, ecology, physics and modeling of engineering and natural sciences. In many cases, it is difficult to obtain analytical solutions of these equations. So, numerical methods as an efficient approximation method for solving Volterra delay integral equations are of interest to many res...

متن کامل

A method to obtain the best uniform polynomial approximation for the family of rational function

In this article, by using Chebyshev’s polynomials and Chebyshev’s expansion, we obtain the best uniform polynomial approximation out of P2n to a class of rational functions of the form (ax2+c)-1 on any non symmetric interval [d,e]. Using the obtained approximation, we provide the best uniform polynomial approximation to a class of rational functions of the form (ax2+bx+c)-1 for both cases b2-4a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014