HEAF: A Novel Estimator for Long-Range Dependent Self-similar Network Traffic

نویسندگان

  • Karim Mohammed Rezaul
  • Algirdas Pakstas
  • R. Gilchrist
  • Thomas M. Chen
چکیده

Long-range dependent (LRD) self-similar chaotic behaviour has been found to be present in internet traffic by many researchers. The ‘Hurst exponent’, H, is used as a measure of the degree of long-range dependence. A variety of techniques exist for estimating the Hurst exponent; these deliver a variable efficacy of estimation. Whilst ways of exploiting these techniques for control and optimization of traffic in real systems are still to be discovered, there is need for a reliable estimator which will characterise the traffic. This paper uses simulation to compare established estimators and introduces a new estimator, HEAF, a ‘Hurst Exponent Autocorrelation Function’ estimator. It is demonstrated that HEAF(2), based on the sample autocorrelation of lag2, yields an estimator which behaves well in terms of bias and mean square error, for both fractional Gaussian and FARIMA processes. Properties of various estimators are investigated and HEAF(2) is shown to have promising results. The performance of the estimators is illustrated by experiments with MPEG/Video traces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Reducing the Degree of Long-range Dependent Network Traffic Using the CoLoRaDe Algorithm

Long-range dependence characteristics have been observed in many natural or physical phenomena. In particular, a significant impact on data network performance has been shown in several papers. Congested Internet situations, where TCP/IP buffers start to fill, show long-range dependent (LRD) self-similar chaotic behaviour. The exponential growth of the number of servers, as well as the number o...

متن کامل

Long-range Dependent Self-similar Network Traffic: A Simulation Study to Compare Some New Estimators

The intensity of long-range dependence (LRD) of the communications network traffic can be measured using the Hurst parameter. There are various estimators of Hurst parameter which differ in reliability of their results. Getting reliable estimator can help to improve traffic characterization, performance modelling, planning and engineering of the real networks. This paper deals with the comparis...

متن کامل

Modeling and Simulation of Self-Similar Traffic in Wireless IP Networks

The paper examines self-similar properties of real telecommunications network traffic data over a wide range of time scales. These self-similar properties are very different from the properties of traditional models based on Poisson and Markov-modulated Poisson processes. Simulation with stochastic and long range dependent traffic source models is performed, and the algorithms for buffer overfl...

متن کامل

Self-generated Self-similar Traffic

Self-similarity in the network traffic has been studied from several aspects: both at the user side and at the network side there are many sources of the long range dependence. Recently some dynamical origins are also identified: the TCP adaptive congestion avoidance algorithm itself can produce chaotic and long range dependent throughput behavior, if the loss rate is very high. In this paper w...

متن کامل

Simulation of Self - Similar Network Traffic Using High Variance on / off Sources

Realistic traffic models are a fundamental requirement for understanding network hardware and software design issues such as queuing behavior, congestion management and buffer sizing. It has been determined that many real-world traffic traces are statistically consistent with long-range dependent or self-similar traffic models, however many current self-similar traffic models are mathematically...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006