On the algorithmic aspects of Hedetniemi’s conjecture

نویسنده

  • Claude Tardif
چکیده

We present a polynomial algorithm, implicit in the work of ElZahar and Sauer, which inputs a 3-colouring of a categorical product of two graphs and outputs a 3-colouring of one of the factors. We raise a question about the existence of polynomial algorithms for colouring the vertices of some graphs in terms of intrinsic succint description of the vertices rather than in terms of the (exponential) size of the graph. Dedicated to Jaroslav Nešetřil on the occasion of his 60th birthday

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

[gtn Liv:6] Hedetniemi’s Conjecture, 40 Years Later

Hedetniemi’s conjecture states that the chromatic number of a categorical product of graphs is equal to the minimum of the chromatic numbers of the factors. We survey the many partial results surrounding this conjecture, to review the evidence and the counter evidence.

متن کامل

Hedetniemi’s Conjecture Via Alternating Chromatic Number

In an earlier paper, the present authors (2013) [1] introduced the alternating chromatic number for hypergraphs and used Tucker’s Lemma, an equivalent combinatorial version of the Borsuk-Ulam Theorem, to show that the alternating chromatic number is a lower bound for the chromatic number. In this paper, we determine the chromatic number of some families of graphs by specifying their alternating...

متن کامل

Hedetniemi's Conjecture and the Retracts of a Product of Graphs

We show that every core graph with a primitive automorphism group has the property that whenever it is a retract of a product of connected graphs, it is a retract of a factor. The example of Kneser graphs shows that the hypothesis that the factors are connected is essential. In the case of complete graphs, our result has already been shown in [4, 17], and it is an instance where Hedetniemi’s co...

متن کامل

A Survey on Hedetniemi’s Conjecture

More than 30 years ago, Hedetniemi made a conjecture which says that the categorical product of two n-chromatic graphs is still n-chromatic. The conjecture is still open, despite many different approaches from different point of views. This article surveys methods and partial results; and discuss problems related to or motivated by this conjecture.

متن کامل

Hedetniemi’s conjecture and fiber products of graphs

We prove that for n ≥ 4, a fiber product of n-chromatic graphs over n-colourings can have chromatic number strictly less than n. This refutes a conjecture of Y. Carbonneaux, S. Gravier, A. Khelladi, A. Semri, Coloring fiber product of graphs. AKCE Int. J. Graphs Comb. 3 (2006), 59–64.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005