Punicalagin inhibits Salmonella virulence factors and has anti-quorum-sensing potential.
نویسندگان
چکیده
Punicalagin, an essential component of pomegranate rind, has been demonstrated to possess antimicrobial activity against several food-borne pathogens, but its activity on the virulence of pathogens and its anti-quorum-sensing (anti-QS) potential have been rarely reported. This study investigated the efficacy of subinhibitory concentrations of punicalagin on Salmonella virulence factors and QS systems. A broth microdilution method was used to determine the MICs of punicalagin for 10 Salmonella strains. Motility assay and quantitative reverse transcription (RT)-PCR were performed to evaluate the effects of punicalagin on the virulence attributes and QS-related genes of Salmonella. The MICs of punicalagin for several Salmonella strains ranged from 250 to 1,000 μg/ml. Motility assays showed that punicalagin, at 1/16× MIC and 1/32× MIC, significantly decreased bacterial swimming and swarming motility, which corresponded to downregulation of the motility-related genes (fliA, fliY, fljB, flhC, and fimD) in RT-PCR assays. RT-PCR also revealed that punicalagin downregulated the expression of most of the selected genes involved in Salmonella virulence. Moreover, a QS inhibition assay indicated that punicalagin dose dependently inhibited the production of violacein by Chromobacterium violaceum and repressed the expression of QS-related genes (sdiA and srgE) in Salmonella. In addition, punicalagin significantly reduced Salmonella invasion of colonic cells (P<0.01) with no impact on adhesion. These findings suggest that punicalagin has the potential to be developed as an alternative or supplemental agent for prevention of Salmonella infection.
منابع مشابه
Anti-quorum sensing effects of Licochalcone A and Epigallocatechin-3-gallate against Salmonella Typhimurium from poultry sources
Quorum sensing (QS) is a cell density-dependent mechanism used by many pathogenic bacteria for regulating virulence gene expression. Inhibition or interruption of QS by medicinal plant remedies has been suggested as a new strategy for fighting against antibiotic-resistant bacteria. This study aimed to assess the impact of sub-inhibitory concentrations of licochalcone A (LAA) and epigallocatechi...
متن کاملLow concentrations of local honey modulate ETA expression, and quorum sensing related virulence in drug-resistant Pseudomonas aeruginosa recovered from infected burn wounds
Objective(s): Honey’s ability to kill microorganisms and even eradication of chronic infections with drug-resistant pathogens has been documented by numerous studies. The present study is focused on the action of honey in its sub-inhibitory levels to impact on the pathogens coordinated behaviors rather than killing them. Materials and Methods:</strong...
متن کاملQuorum Sensing in Microbial Virulence
Cell-to cell communication occurs via a signaling pathway referred to as quorum sensing. There are four main types of these systems according to the chemical nature of signal molecules used by microorganisms to elicit expression of target genes in response to environmental stimuli or need of microbial communities. Type I system acts by using acyl homoserine lactones as signals to trigger the ex...
متن کاملAnti-virulence potential of eugenol-rich fraction of Syzygium aromaticum against multidrug resistant uropathogens isolated from catheterized patients
Objective: Considering the emergence of biofilm-associated pathogens with multidrug resistance, the objective(s) of the present study was to evaluate the anti-virulence property of Syzygium aromaticum extracts/fractions against 2 multidrug-resistant catheter isolates. Materials and Methods: Pulverized clove buds were subjected to bioactivity-guided isolation to identify the bioactive extract/fr...
متن کاملAnti-quorum Sensing and Anti-biofilm Activity of Delftia tsuruhatensis Extract by Attenuating the Quorum Sensing-Controlled Virulence Factor Production in Pseudomonas aeruginosa
Multidrug-resistance bacteria commonly use cell-to-cell communication that leads to biofilm formation as one of the mechanisms for developing resistance. Quorum sensing inhibition (QSI) is an effective approach for the prevention of biofilm formation. A Gram-negative bacterium, Delftia tsuruhatensis SJ01, was isolated from the rhizosphere of a species of sedge (Cyperus laevigatus) grown along t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 80 19 شماره
صفحات -
تاریخ انتشار 2014