Molecular Characterization of Notch1 Positive Progenitor Cells in the Developing Retina
نویسندگان
چکیده
The oscillatory expression of Notch signaling in neural progenitors suggests that both repressors and activators of neural fate specification are expressed in the same progenitors. Since Notch1 regulates photoreceptor differentiation and contributes (together with Notch3) to ganglion cell fate specification, we hypothesized that genes encoding photoreceptor and ganglion cell fate activators would be highly expressed in Notch1 receptor-bearing (Notch1+) progenitors, directing these cells to differentiate into photoreceptors or into ganglion cells when Notch1 activity is diminished. To identify these genes, we used microarray analysis to study expression profiles of whole retinas and isolated from them Notch1+ cells at embryonic day 14 (E14) and postnatal day 0 (P0). To isolate Notch1+ cells, we utilized immunomagnetic cell separation. We also used Notch3 knockout (Notch3KO) animals to evaluate the contribution of Notch3 signaling in ganglion cell differentiation. Hierarchical clustering of 6,301 differentially expressed genes showed that Notch1+ cells grouped near the same developmental stage retina cluster. At E14, we found higher expression of repressors (Notch1, Hes5) and activators (Dll3, Atoh7, Otx2) of neuronal differentiation in Notch1+ cells compared to whole retinal cell populations. At P0, Notch1, Hes5, and Dll1 expression was significantly higher in Notch1+ cells than in whole retinas. Otx2 expression was more than thirty times higher than Atoh7 expression in Notch1+ cells at P0. We also observed that retinas of wild type animals had only 14% (P < 0.05) more ganglion cells compared to Notch3KO mice. Since this number is relatively small and Notch1 has been shown to contribute to ganglion cell fate specification, we suggested that Notch1 signaling may play a more significant role in RGC development than the Notch3 signaling cascade. Finally, our findings suggest that Notch1+ progenitors--since they heavily express both pro-ganglion cell (Atoh7) and pro-photoreceptor cell (Otx2) activators--can differentiate into either ganglion cells or photoreceptors.
منابع مشابه
Notch 1 inhibits photoreceptor production in the developing mammalian retina.
The transmembrane receptor Notch1 plays a role in development and homeostasis in vertebrates and invertebrates. The mammalian retina is an excellent tissue in which to dissect the precise role of Notch signaling in regulating cell fate and proliferation. However, a systematic analysis has been limited by the early embryonic lethality of Notch1-null mice. Here, Notch1 was conditionally removed f...
متن کاملNotch1 functions to suppress cone-photoreceptor fate specification in the developing mouse retina.
Notch receptor-mediated cell-cell signaling is known to negatively regulate neurogenesis in both vertebrate and invertebrate species, while being implicated in promoting the acquisition of glial fates. We studied Notch1 function directly during retinal neurogenesis by selective Cre/loxP-triggered Notch1 gene inactivation in peripheral retinal progenitor cells (RPCs) prior to the onset of cell d...
متن کاملImmunohistological and electrophysiological characterization of Globose basal stem cells
Objective(s): In the past few decades, variety of foetal, embryonic and adult stem and progenitor cells have been tried with conflicting outcome for cell therapy of central nervous system injury and diseases. Cellular characteristics and functional plasticity of Globose basal stem cells (GBCs) residing in the olfactory epithelium of rat olfactory mucosa have not been studied in the past by the ...
متن کامل21-P010 FGF-signaling in the neurogenesis of the developing midbrain–hindbrain region
During retinal development, six different neuronal classes and one glial cell type arise in a conserved, temporal sequence from multipotent, cycling retinal progenitor cells (RPCs). Developing tissues, such as the retina, are exquisitely sensitive to timing of Notch signaling. Interestingly, removal of Notch1 during retinal development resulted in cell cycle exit and overproduction of photorece...
متن کامل21-P009 Identification of Wnt target genes in the developing cerebral cortex
During retinal development, six different neuronal classes and one glial cell type arise in a conserved, temporal sequence from multipotent, cycling retinal progenitor cells (RPCs). Developing tissues, such as the retina, are exquisitely sensitive to timing of Notch signaling. Interestingly, removal of Notch1 during retinal development resulted in cell cycle exit and overproduction of photorece...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2015