AMP promotes oxygen consumption and ATP synthesis in heart mitochondria through the adenylate kinase reaction: an NMR spectroscopy and polarography study.
نویسندگان
چکیده
Adenylate kinase plays an important role in cellular energy homeostasis by catalysing the interconversion of adenine nucleotides. The goal of present study was to evaluate the contribution of the adenylate kinase reaction to oxidative ATP synthesis by direct measurements of ATP using (31) P NMR spectroscopy. Results show that AMP can stimulate ATP synthesis in the presence or absence of ADP. In particular, addition of 1 mM AMP to the 0.6 mM ADP superfusion system of isolated superfused mitochondria (contained and maintained in agarose beads) led to a 25% increase in ATP synthesis as measured by the increase in βATP signal. More importantly, we show that AMP can support ATP synthesis in the absence of ADP, demonstrated as follows. Superfusion of mitochondria without ADP led to the disappearance of ATP γ, α and β signals and the increase of Pi . Addition of AMP to the medium restored the production of ATP, as demonstrated by the reappearance of γ, α and β ATP signals, in conjunction with a decrease in Pi , which is being used for ATP synthesis. Polarographic studies showed Mg(2+) dependence of this process, confirming the specificity of the adenylate kinase reaction. Furthermore, data obtained from this study demonstrate, for the first time, that different aspects of the adenylate kinase reaction can be evaluated with (31) P NMR spectroscopy. SIGNIFICANCE OF RESEARCH PARAGRAPH: The data generated in the present study indicate that (31) P NMR spectroscopy can effectively be used to study the adenylate kinase reaction under a variety of conditions. This is important because understanding of adenylate kinase function and/or malfunction is essential to understanding its role in health and disease. The data obtained with (31) P NMR were confirmed by polarographic studies, which further strengthens the robustness of the NMR findings. In summary, (31) P NMR spectroscopy provides a sensitive tool to study adenylate kinase activity in different physiological and pathophysiological conditions, including but not exclusive of, cancer, ischemic injury, hemolytic anemia and neurological problems such as sensorineural deafness.
منابع مشابه
Reaction rates of creatine kinase and ATP synthesis in the isolated rat heart. A 31P NMR magnetization transfer study.
The NMR technique of magnetization transfer can be used to define intracellular reaction kinetics. In order to determine the relationship between ATP synthesis and flux through the creatine kinase reaction in the intact heart, we used this technique to measure flux through the creatine kinase reaction in the isolated, isovolumic rat heart at five levels of cardiac performance and oxygen consump...
متن کاملKinetics of creatine kinase in an experimental model of low phosphocreatine and ATP in the normoxic heart.
To study the dependence of the forward flux of creatine kinase (CK) on its substrates and products we designed an acute normoxic model of steady-state depletion of phosphocreatine (PCr) and adenylate in the isovolumic acetate-perfused rat heart. Various concentrations of PCr and ATP were induced by prior perfusion with 2 deoxy-d-glucose in the presence of insulin. The apparent rate constant ( k...
متن کاملGlycogen synthase kinase 3 inhibition slows mitochondrial adenine nucleotide transport and regulates voltage-dependent anion channel phosphorylation.
Inhibition of glycogen synthase kinase (GSK)-3 reduces ischemia/reperfusion injury by mechanisms that involve the mitochondria. The goal of this study was to explore possible molecular targets and mechanistic basis of this cardioprotective effect. In perfused rat hearts, treatment with GSK inhibitors before ischemia significantly improved recovery of function. To assess the effect of GSK inhibi...
متن کاملOn the control of metabolic remodeling in mitochondria of the failing heart.
The metabolic phenotype of the failing heart may be defined as follows.1 Metabolism remodels in the failing heart, leading to a loss in energy reserve and the inability to increase ATP supply. Ultimately, this metabolic rigidity leads to a fall in ATP. The likely time line is decreased energy reserve via the phosphotransferase reactions (creatine kinase [CK] and adenylate kinase) leading to inc...
متن کاملMagnetization Transfer Nuclear Magnetic Resonance Spectroscopy
Ventricular fibrillation (VF) is known to produce alterations in myocardial energetics, but the mechanism of these changes remains unclear. To investigate energy metabolism during VF, phosphorus nuclear magnetic resonance spectroscopy and magnetization transfer were applied to isolated perfused ferret hearts. VF was induced either by perfusion with digitalis (strophanthidin, 30 gM) or by high-f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell biochemistry and function
دوره 33 2 شماره
صفحات -
تاریخ انتشار 2015