Semi–holonomic Verma Modules

نویسندگان

  • Michael Eastwood
  • Jan Slovák
چکیده

Verma modules arise geometrically through the jets of homogeneous vector bundles. We consider in this article, the modules that arise from the semi-holonomic jets of a homogeneous vector bundle. We are particularly concerned with the case of a sphere under MMbius transformations. In this case there are immediate applications in the theory of conformally invariant diierential operators.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kazhdan-Lusztig Conjecture and Holonomic Systems

In [7], D. Kazhdan and G. Lusztig gave a conjecture on the multiplicity of simple modules which appear in a Jordan-H61der series of the Verma modules. This multiplicity is described in the terms of Coxeter groups and also by the geometry of Schubert cells in the flag manifold (see [8]). The purpose of this paper is to give the proof of their conjecture. The method employed here is to associate ...

متن کامل

Moduli of regular holonomic D-modules with normal crossing singularities

This paper solves the global moduli problem for regular holonomic Dmodules with normal crossing singularities on a nonsingular complex projective variety. This is done by introducing a level structure (which gives rise to “pre-D-modules”), and then introducing a notion of (semi-)stability and applying Geometric Invariant Theory to construct a coarse moduli scheme for semistable pre-D-modules. A...

متن کامل

http://www.ictp.trieste.it/~pub_off IC/97/21 United Nations Educational Scientific and Cultural Organization and International Atomic Energy Agency INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS MODULI OF REGULAR HOLONOMIC D-MODULES WITH NORMAL CROSSING SINGULARITIES

This paper solves the global moduli problem for regular holonomic D-modules with normal crossing singularities on a nonsingular complex projective variety. This is done by introducing a level structure (which gives rise to "pre-D-modules"), and then introducing a notion of (semi-)stability and applying Geometric Invariant Theory to construct a coarse moduli scheme for semistable pre-D-modules. ...

متن کامل

Modules of the toroidal Lie algebra $widehat{widehat{mathfrak{sl}}}_{2}$

‎Highest weight modules of the double affine Lie algebra $widehat{widehat{mathfrak{sl}}}_{2}$ are studied under a‎ ‎new triangular decomposition‎. ‎Singular vectors of Verma modules are‎ ‎determined using a similar condition with horizontal affine Lie‎ ‎subalgebras‎, ‎and highest weight modules are described under the‎ ‎condition $c_1>0$ and $c_2=0$.

متن کامل

Holonomic D-modules on Abelian Varieties

We study the Fourier-Mukai transform for holonomic D-modules on complex abelian varieties. Among other things, we show that the cohomology support loci of a holonomic D-module are finite unions of linear subvarieties, which go through points of finite order for objects of geometric origin; that the standard t-structure on the derived category of holonomic complexes corresponds, under the Fourie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996