Auxiliary linear problem , difference Fay identities and dispersionless limit of Pfaff - Toda hierarchy Kanehisa Takasaki
نویسنده
چکیده
Recently the study of Fay-type identities revealed some new features of the DKP hierarchy (also known as “the coupled KP hierarchy” and “the Pfaff lattice”). Those results are now extended to a Toda version of the DKP hierarchy (tentatively called “the Pfaff-Toda hierarchy”) . Firstly, an auxiliary linear problem of this hierarchy is constructed. Unlike the case of the DKP hierarchy, building blocks of the auxiliary linear problem are difference operators. A set of evolution equations for dressing operators of the wave functions are also obtained. Secondly, a system of Fay-like identities (difference Fay identities) are derived. They give a generating functional expression of auxiliary linear equations. Thirdly, these difference Fay identities have well defined dispersionless limit (dispersionless Hirota equations). As in the case of the DKP hierarchy, an elliptic curve is hidden in these dispersionless Hirota equations. This curve is a kind of spectral curve, whose defining equation is identified with the characteristic equation of a subset of all auxiliary linear equations. The other auxiliary linear equations are related to quasi-classical deformations of this elliptic spectral curve. 2000 Mathematics Subject Classification: 35Q58, 37K10
منابع مشابه
Auxiliary Linear Problem, Difference Fay Identities and Dispersionless Limit of Pfaff–Toda Hierarchy
Recently the study of Fay-type identities revealed some new features of the DKP hierarchy (also known as “the coupled KP hierarchy” and “the Pfaff lattice”). Those results are now extended to a Toda version of the DKP hierarchy (tentatively called “the Pfaff–Toda hierarchy”). Firstly, an auxiliary linear problem of this hierarchy is constructed. Unlike the case of the DKP hierarchy, building bl...
متن کاملDifferential Fay identities and auxiliary linear problem of integrable hiearchies
We review the notion of differential Fay identities and demonstrate, through case studies, its new role in integrable hierarchies of the KP type. These identities are known to be a convenient tool for deriving dispersionless Hirota equations. We show that differential (or, in the case of the Toda hierarchy, difference) Fay identities play a more fundamental role. Namely, they are nothing but a ...
متن کاملDifferential Fay identities and auxiliary linear problem of integrable hierarchies
We review the notion of differential Fay identities and demonstrate, through case studies, its new role in integrable hierarchies of the KP type. These identities are known to be a convenient tool for deriving dispersionless Hirota equations. We show that differential (or, in the case of the Toda hierarchy, difference) Fay identities play a more fundamental role. Namely, they are nothing but a ...
متن کاملDispersionless Hirota equations of two-component BKP hierarchy
The BKP hierarchy has a two-component analogue (the 2-BKP hierarchy). Dispersionless limit of this multi-component hierarchy is considered on the level of the τ -function. The so called dispersionless Hirota equations are obtained from the Hirota equations of the τ -function. These dispersionless Hirota equations turn out to be equivalent to a system of Hamilton-Jacobi equations. Other relevant...
متن کاملQuasi-classical limit of BKP hierarchy and W-infinity symmetries
Previous results on quasi-classical limit of the KP and Toda hierarchies are now extended to the BKP hierarchy. Basic tools such as the Lax representation, the Baker-Akhiezer function and the tau function are reformulated so as to fit into the analysis of quasi-classical limit. Two subalgebras WB 1+∞ and w B 1+∞ of the Winfinity algebrasW1+∞ and w1+∞ are introduced as fundamental Lie algebras o...
متن کامل