Easy Minimax Estimation with Random Forests for Human Pose Estimation
نویسندگان
چکیده
We describe a method for human parsing that is straightforward and competes with state-of-the-art performance on standard datasets. Unlike the state-of-the-art, our method does not search for individual body parts or poselets. Instead, a regression forest is used to predict a body configuration in body-space. The output of this regression forest is then combined in a novel way. Instead of averaging the output of each tree in the forest we use minimax to calculate optimal weights for the trees. This optimal weighting improves performance on rare poses and improves the generalization of our method to different datasets. Our paper demonstrates the unique advantage of random forest representations: minimax estimation is straightforward with no significant retraining burden.
منابع مشابه
Continous Head Pose Estimation using Random Regression Forests
Head pose is a rich visual cue that finds great interest in the field of human robot interaction (HRI) and for video surveillance applications. Previous attempts at solving this problem have often proposed solutions formulated in a classification setting. Furthermore, strong assumptions on illumination and scale in an occlusion-free environment have usually been made. We propose a regression so...
متن کاملAutomatic head pose estimation with Synchronized sub manifold embedding and Random Regression Forests
Head pose can indicate the eye-gaze direction and face toward which is an important part of human motion estimation and understanding. Due to physical factors of the camera, shooting environment, as well as the appearance change of humanity, the head pose estimation becomes a challenging task. Synchronization sub manifold embedding can find the internal structure of nonlinear data for nonlinear...
متن کاملOn the Minimax Optimality of Block Thresholded Wavelets Estimators for ?-Mixing Process
We propose a wavelet based regression function estimator for the estimation of the regression function for a sequence of ?-missing random variables with a common one-dimensional probability density function. Some asymptotic properties of the proposed estimator based on block thresholding are investigated. It is found that the estimators achieve optimal minimax convergence rates over large class...
متن کاملStatic Pose Estimation from Depth Images using Random Regression Forests and Hough Voting
Robust and fast algorithms for estimating the pose of a human given an image would have a far reaching impact on many fields in and outside of computer vision. We address the problem using depth data that can be captured inexpensively using consumer depth cameras such as the Kinect sensor. To achieve robustness and speed on a small training dataset, we formulate the pose estimation task within ...
متن کاملReal-Time Head Pose Estimation Using Random Regression Forests
Automatic head pose estimation is useful in human computer interaction and biometric recognition. However, it is a very challenging problem. To achieve robust for head pose estimation, a novel method based on depth images is proposed in this paper. The bilateral symmetry of face is utilized to design a discriminative integral slice feature, which is presented as a 3D vector from the geometric c...
متن کامل