Incompatibility of Nuclear and Mitochondrial Genomes Causes Hybrid Sterility between Two Yeast Species
نویسندگان
چکیده
Hybrids between species are usually unviable or sterile. One possible mechanism causing reproductive isolation is incompatibility between genes from different species. These "speciation" genes are interacting components that cannot function properly when mixed with alleles from other species. To test whether such genes exist in two closely related yeast species, we constructed hybrid lines in which one or two chromosomes were derived from Saccharomyces bayanus, and the rest were from Saccharomyces cerevisiae. We found that the hybrid line with Chromosome 13 substitution was completely sterile and identified Aep2, a mitochondrial protein encoded on Chromosome 13, to cause the sporulation defect as S. bayanus AEP2 is incompatible with S. cerevisiae mitochondria. This is caused by the inability of S. bayanus Aep2 protein to regulate the translation of the S. cerevisiae OLI1 mRNA. We speculate that AEP2 and OLI1 have evolved during the adaptation of S. bayanus to nonfermentable carbon sources, thereby driving speciation.
منابع مشابه
Clash of the Genomes
Full-genome sequences of multiple yeast species offer exciting possibilities for the functional analysis of yeast evolution and speciation. Lee et al. (2008) now report that hybrid sterility between two yeast species is caused by incompatibility between a nuclear-encoded mitochondrial regulatory protein and its mitochondrial-encoded target gene.
متن کاملMultiple Molecular Mechanisms Cause Reproductive Isolation between Three Yeast Species
Nuclear-mitochondrial conflict (cytonuclear incompatibility) is a specific form of Dobzhansky-Muller incompatibility previously shown to cause reproductive isolation in two yeast species. Here, we identified two new incompatible genes, MRS1 and AIM22, through a systematic study of F2 hybrid sterility caused by cytonuclear incompatibility in three closely related Saccharomyces species (S. cerevi...
متن کاملCytoplasmic–Nuclear Incompatibility Between Wild Isolates of Caenorhabditis nouraguensis
How species arise is a fundamental question in biology. Species can be defined as populations of interbreeding individuals that are reproductively isolated from other such populations. Therefore, understanding how reproductive barriers evolve between populations is essential for understanding the process of speciation. Hybrid incompatibility (for example, hybrid sterility or lethality) is a com...
متن کاملEvidence of natural selection acting on a polymorphic hybrid incompatibility locus in Mimulus.
As a common cause of reproductive isolation in diverse taxa, hybrid incompatibilities are fundamentally important to speciation. A key question is which evolutionary forces drive the initial substitutions within species that lead to hybrid dysfunction. Previously, we discovered a simple genetic incompatibility that causes nearly complete male sterility and partial female sterility in hybrids be...
متن کاملMitochondrial-nuclear co-evolution leads to hybrid incompatibility through pentatricopeptide repeat proteins.
Mitochondrial-nuclear incompatibility has a major role in reproductive isolation between species. However, the underlying mechanism and driving force of mitochondrial-nuclear incompatibility remain elusive. Here, we report a pentatricopeptide repeat-containing (PPR) protein, Ccm1, and its interacting partner, 15S rRNA, to be involved in hybrid incompatibility between two yeast species, Saccharo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell
دوره 135 شماره
صفحات -
تاریخ انتشار 2008