The effect of genetic conflict on genomic imprinting and modification of expression at a sex-linked locus.
نویسندگان
چکیده
We examine how genomic imprinting may have evolved at an X-linked locus, using six diallelic models of selection in which one allele is imprintable and the other is not. Selection pressures are generated by genetic conflict between mothers and their offspring. The various models describe cases of maternal and paternal inactivation, in which females may be monogamous or bigamous. When inactivation is maternal, we examine the situations in which only female offspring exhibit imprinting as well as when both sexes do. We compare our results to those previously obtained for an autosomal locus and to four models in which a dominant modifier of biallelic expression is subjected to the same selection pressures. We find that, in accord with verbal predictions, maternal inactivation of growth enhancers and paternal inactivation of growth inhibitors are more likely than imprinting in the respective opposite directions, although these latter outcomes are possible for certain parameter combinations. The expected outcomes are easier to evolve than the same outcomes for autosomal loci, contradicting the available evidence concerning the direction of imprinting on mammalian sex chromosomes. In most of our models stable polymorphism of imprinting status is possible, a behavior not predicted by verbal accounts.
منابع مشابه
I-50: Embryo Loss Due to Epigenetic Anomaliesin the Male Germ Line: Role of Estrogen
Background: To investigate if aberrant methylation and expression of imprinted genes of the Igf2-H19 locus in the spermatozoa and embryos could be a paternal epigenetic factor involved in early embryo loss To elucidate the role of estrogen in acquisition of the imprinting at the Igf2-H19 locus during spermatogenesis Materials and Methods: Adult male rats of Holtzman strain were administered tam...
متن کاملThe evolution of X-linked genomic imprinting.
We develop a quantitative genetic model to investigate the evolution of X-imprinting. The model compares two forces that select for X-imprinting: genomic conflict caused by polygamy and sex-specific selection. Genomic conflict can only explain small reductions in maternal X gene expression and cannot explain silencing of the maternal X. In contrast, sex-specific selection can cause extreme diff...
متن کاملI-43: Identification of SOX3 as an XX MaleSex Reversal Gene in Mice and Jumans
Background: Mammals utilise an XX/XY system of sex determination in which the Y-linked gene SRY (Sexdetermining region Y) exerts a dominant masculinising influence on sexual development. Sex chromosome homology and comparative sequence studies suggest that SRY evolved from the related SOX3 gene on the X chromosome, although there is no direct functional evidence to support this hypothesis. The ...
متن کاملIdentification of a sex-linked SCAR marker for Plecoglossus altivelis and its application for identifying gender in cultivated and wild populations
Ayu (Plecoglossus altivelis), one kinds of valuable cultured fish species, show almost no morphological difference between male and female until sexual maturity. Here, we report the identification of sex-linked markers for the ayu, based on Amplified Fragment Length Polymorphism (AFLP) generated from cultured fish (15 males and 15 females) by using 63 different primer combinations. Genomic frag...
متن کاملAccuracy of Genomic Prediction under Different Genetic Architectures and Estimation Methods
The accuracy of genomic breeding value prediction was investigated in various levels of reference population size, trait heritability and the number of quantitative trait locus (QTL). Five Bayesian methods, including Bayesian Ridge regression, BayesA, BayesB, BayesC and Bayesian LASSO, were used to estimate the marker effects for each of 27 scenarios resulted from combining three levels for her...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics
دوره 166 1 شماره
صفحات -
تاریخ انتشار 2004