Filtrage vaste marge pour l'étiquetage séquentiel à noyaux de signaux

نویسندگان

  • Rémi Flamary
  • Benjamin Labbé
  • Alain Rakotomamonjy
چکیده

Résumé : Ce papier traite de l’étiquetage séquentiel de signaux, c’est-à-dire de discrimination pour des échantillons temporels. Dans ce contexte, nous proposons une méthode d’apprentissage pour un filtrage vaste-marge séparant au mieux les classes. Nous apprenons ainsi de manière jointe un SVM sur des échantillons et un filtrage temporel de ces échantillons. Cette méthode permet l’étiquetage en ligne d’échantillons temporels. Un décodage de séquence hors ligne optimal utilisant l’algorithme de Viterbi est également proposé. Nous introduisons différents termes de régularisation, permettant de pondérer ou de sélectionner les canaux automatiquement au sens du critère vaste-marge. Finalement, notre approche est testée sur un exemple jouet de signaux non-linéaires ainsi que sur des données réelles d’Interface Cerveau-Machine. Ces expériences montrent l’intérêt de l’apprentissage supervisé d’un filtrage temporel pour l’étiquetage de séquence. Mots-clés : SVM, Étiquetage séquentiel, Filtrage

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Un modèle d'espace vectoriel de concepts pour noyaux sémantiques

Résumé. Les noyaux ont été largement utilisés pour le traitement de données textuelles comme mesure de similarité pour des algorithmes tels que les Séparateurs à Vaste Marge (SVM). Le modèle de l’espace vectoriel (VSM) a été amplement utilisé pour la représentation spatiale des documents. Cependant, le VSM est une représentation purement statistique. Dans ce papier, nous présentons un modèle d’...

متن کامل

Filtrage bayésien de la récompense

Résumé : Une large variété de schémas d’approximation de la fonction de valeur a été appliquée à l’apprentissage par renforcement. Cependant, les approches par filtrage bayésien, qui se sont pourtant montrées efficaces dans d’autres domaines comme l’apprentissage de paramètres pour les réseaux neuronaux, ont été peu étudiées jusqu’à présent. Cette contribution introduit un cadre de travail géné...

متن کامل

Identification Biométrique des Individus par leurs Empreintes Palmaires «Palmprints»: Classification par la Méthode des Séparateurs à Vaste Marge (SVM)

Résumé. L’identification des individus par leurs empreintes palmaires (Palmprints), considérée comme nouveau membre de la famille des modalités biométriques, est devenue un domaine de recherche très actif durant ces dernières années. Les travaux réalisés, jusqu’à présent, se sont basés sur les techniques de représentation des images de palmprints pour une meilleure classification. Dans notre tr...

متن کامل

SVM incrémental et parallèle sur GPU

Résumé. Nous présentons un nouvel algorithme incrémental et parallèle de Séparateur à Vaste Marge (SVM ou Support Vector Machine) pour la classification de très grands ensembles de données en utilisant le processeur de la carte graphique (GPUs, Graphics Processing Units). Les SVMs et les méthodes de noyaux permettent de construire des modèles avec une bonne précision mais ils nécessitent habitu...

متن کامل

Séparateurs à Vaste Marge Optimisant la Fonction Fbeta

Dans cet article, nous introduisons une nouvelle paramétrisation des Séparateurs à Vaste Marge (SVM) appelée Fβ SVM. Cette dernière permet d’effectuer un apprentissage basé sur l’optimisation de la fonction Fβ au lieu de l’erreur de classification habituelle. Les expériences montrent les avantages d’une telle démarche par rapport à la formulation soft-margin standard (avec les écarts à la marge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1007.0824  شماره 

صفحات  -

تاریخ انتشار 2010