Electrochemical tuning of MoS2 nanoparticles on three-dimensional substrate for efficient hydrogen evolution.

نویسندگان

  • Haotian Wang
  • Zhiyi Lu
  • Desheng Kong
  • Jie Sun
  • Thomas M Hymel
  • Yi Cui
چکیده

Molybdenum disulfide (MoS2) with the two-dimensional layered structure has been widely studied as an advanced catalyst for hydrogen evolution reaction (HER). Intercalating guest species into the van der Waals gaps of MoS2 has been demonstrated as an effective approach to tune the electronic structure and consequently improve the HER catalytic activity. In this work, by constructing nanostructured MoS2 particles with largely exposed edge sites on the three-dimensional substrate and subsequently conducting Li electrochemical intercalation and exfoliation processes, an ultrahigh HER performance with 200 mA/cm(2) cathodic current density at only 200 mV overpotential is achieved. We propose that both the high surface area nanostructure and the 2H semiconducting to 1T metallic phase transition of MoS2 are responsible for the outstanding catalytic activity. Electrochemical stability test further confirms the long-term operation of the catalyst.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts.

The identification of the active sites in heterogeneous catalysis requires a combination of surface sensitive methods and reactivity studies. We determined the active site for hydrogen evolution, a reaction catalyzed by precious metals, on nanoparticulate molybdenum disulfide (MoS2) by atomically resolving the surface of this catalyst before measuring electrochemical activity in solution. By pr...

متن کامل

Beneficial effect of Re doping on the electrochemical HER activity of MoS2 fullerenes.

Electrochemical generation of hydrogen by non-precious metal electrocatalysts at a lower overpotential is a focus area of research directed towards sustainable energy. The exorbitant costs associated with Pt-based catalysts is the major bottleneck associated with commercial-scale hydrogen generation. Strategies for the synthesis of cost-effective and stable catalysts are thus key for a prospect...

متن کامل

One-Step Hydrothermal Fabrication of Three-dimensional MoS2 Nanoflower using Polypyrrole as Template for Efficient Hydrogen Evolution Reaction

Herein, a facile and cost-effective strategy for hydrothermal synthesis of three-dimensional (3D) MoS2 with adequate active edge sites and advanced hydrogen evolution reaction (HER) performance using polypyrrole (PPy) as template is reported. The MoS2 is first thermally nucleated using hexaammonium heptamolybdate tetrahydrate (NH4)6Mo7O24·4H2O and thiourea as precursor in the presence of PPy, a...

متن کامل

Pt nanoparticles/MoS2 nanosheets/carbon fibers as efficient catalyst for the hydrogen evolution reaction

Advanced materials for electrocatalytic water splitting are central to renewable energy research. In this study, we describe a two-step reaction for preparing hydrogen evolution reaction (HER) electrodes composed of Pt nanoparticles and MoS2 nanosheets grown on carbon fibers. The morphology and the structures are characterized by a variety of techniques including SEM, TEM, XRD and XPS. Detailed...

متن کامل

Computational Study on Reduction Potential of [CoP4N2(OH2)2]2+ as a Super-Efficient Catalyst in Electrochemical Hydrogen Evolution

Hydrogen is considered as a unique choice for future world’s resources. The important parameter in the process of hydrogen production is the value of reduction potential for the used catalyst, in direct contact with consumed energy in process. The application of computational methods to design and modify molecular catalysts is highly regarded. This study sought to explore Density Functional...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS nano

دوره 8 5  شماره 

صفحات  -

تاریخ انتشار 2014