Capillary endothelial cell cultures: phenotypic modulation by matrix components
نویسندگان
چکیده
Capillary endothelial cells of rat epididymal fat pad were isolated and cultured in media conditioned by bovine aortic endothelial cells and substrata consisting of interstitial or basement membrane collagens. When these cells were grown on interstitial collagens they underwent proliferation, formed a continuous cell layer and, if cultured for long periods of time, formed occasional tubelike structures. In contrast, when these cells were grown on basement membrane collagens, they did not proliferate but did aggregate and form tubelike structures at early culture times. In addition, cells grown on basement membrane substrata expressed more basement membrane constituents as compared with cells grown on interstitial matrices when assayed by immunoperoxidase methods and quantitated by enzyme-linked immunosorbent inhibition assays. Furthermore, when cells were grown on either side of washed, acellular amnionic membranes their phenotypes were markedly different. On the basement membrane surface they adhered, spread, and formed tubelike structures but did not migrate through the basement membrane. In contrast, when seeded on the stromal surface, these cells were observed to proliferate and migrate into the stromal aspect of the amnion and ultimately formed tubelike structures at high cell densities at longer culture periods (21 d). Thus, connective tissue components play important roles in regulating the phenotypic expression of capillary endothelial cells in vitro, and similar roles of the collagenous components of the extracellular matrix may exist in vivo following injury and during angiogenesis. Furthermore, the culture systems outlined here may be of use in the further study of differentiated, organized capillary endothelial cells in culture.
منابع مشابه
3D study of capillary network derived from human cord blood mesenchymal stem cells and differentiated into endothelial cell with VEGFR2 protein expression
New blood forming vessels are produced by differentiation of mesodermal precursor cells to angioblasts that become endothelial cells (ECs) which in turn give rise to primitive capillary network. Human cord blood (HCB) contains large subsets of mononuclear cells (MNCs) that can be differentiated into endothelial-like cells in vitro. Human mononuclear progenitor cells were purified from fresh umb...
متن کاملCapillary Network Formation by Endothelial Cells Differentiated from Human Bone Marrow Mesenchymal Stem Cells
Human bone marrow derived mesenchymal stem cells (HBMSCs) have the potential to differentiate into cells such as adipocyte, osteocyte, hepatocyte and endothelial cells. In this study, the differentiation of hBMSCs into endothelial like-cells was induced in presence of vascular endothelial growth factor (VEGF) and insulin-like growth factor (IGF-1). The differentiated endothelial cells were exam...
متن کاملMural Cell Associated VEGF Is Required for Organotypic Vessel Formation
BACKGROUND Blood vessels comprise endothelial cells, mural cells (pericytes/vascular smooth muscle cells) and basement membrane. During angiogenesis, mural cells are recruited to sprouting endothelial cells and define a stabilizing context, comprising cell-cell contacts, secreted growth factors and extracellular matrix components, that drives vessel maturation and resistance to anti-angiogenic ...
متن کاملPhenotypic modulation of endothelial cells by transforming growth factor-beta depends upon the composition and organization of the extracellular matrix
Transforming growth factor beta (TGF-beta) is angiogenic in vivo. In vitro, endothelial cell proliferation is inhibited by TGF-beta. We have correlated this inhibitory effect with an increase in cellular fibronectin synthesis and deposition in a two-dimensional culture system using specific matrix coatings. The inhibitory effect was mimicked by addition of soluble fibronectin to cultures. In co...
متن کاملPerturbations in the fibrinolytic pathway abolish cyst formation but not capillary-like organization of cultured murine endothelial cells.
Fibrinolytic activity and its relation to morphogenesis was investigated in several transformed murine endothelial cell lines and primary cultures of endothelial cells. Two in vitro systems, fibrin gels and Matrigel (Collaborative Research, Bedford, MA), were used. Fibrin gels model a fibrin-rich extracellular matrix that frequently supports neovascularization in vivo, and Matrigel models the b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 97 شماره
صفحات -
تاریخ انتشار 1983