Stability of Mixtures of Vector Autoregressions with Autoregressive Conditional Heteroskedasticity

نویسنده

  • Pentti Saikkonen
چکیده

This paper gives necessary and sufficient conditions for stationarity and existence of second moments in mixtures of linear vector autoregressive models with autoregressive conditional heteroskedasticity. Sufficient conditions are also provided for a more general model in which the mixture components are permitted to exhibit limited forms of nonlinearity. When specialized to the corresponding non-mixture case these sufficient conditions improve on their previous counterparts obtained for nonlinear autoregressions with nonlinear conditional heteroskedasticity. In this context, a previous conjecture is also disproved. The results of the paper are proved by using the stability theory of Markov chains. Stationarity, existence of second moments of the stationary distribution, and β-mixing are obtained by establishing an appropriate version of geometric ergodicity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of Neural Network Models, Vector Auto Regression (VAR), Bayesian Vector-Autoregressive (BVAR), Generalized Auto Regressive Conditional Heteroskedasticity (GARCH) Process and Time Series in Forecasting Inflation in ‎Iran‎

‎This paper has two aims. The first is forecasting inflation in Iran using Macroeconomic variables data in Iran (Inflation rate, liquidity, GDP, prices of imported goods and exchange rates) , and the second is comparing the performance of forecasting vector auto regression (VAR), Bayesian Vector-Autoregressive (BVAR), GARCH, time series and neural network models by which Iran's inflation is for...

متن کامل

Identifying Structural Vector Autoregressions via Changes in Volatility

Identification of shocks of interest is a central problem in structural vector autoregressive (SVAR) modelling. Identification is often achieved by imposing restrictions on the impact or long-run effects of shocks or by considering sign restrictions for the impulse responses. In a number of articles changes in the volatility of the shocks have also been used for identification. The present stud...

متن کامل

Asymptotic Theory for a Vector Arma-garch Model

This paper investigates the asymptotic theory for a vector autoregressive moving average–generalized autoregressive conditional heteroskedasticity ~ARMAGARCH! model+ The conditions for the strict stationarity, the ergodicity, and the higher order moments of the model are established+ Consistency of the quasimaximum-likelihood estimator ~QMLE! is proved under only the second-order moment conditi...

متن کامل

Improving Forecasts of Generalized Autoregressive Conditional Heteroskedasticity with Wavelet Transform

In the study, we discussed the generalized autoregressive conditional heteroskedasticity model and enhanced it with wavelet transform to evaluate the daily returns for 1/4/2002-30/12/2011 period in Brent oil market. We proposed discrete wavelet transform generalized autoregressive conditional heteroskedasticity model to increase the forecasting performance of the generalized autoregressive cond...

متن کامل

Identification of Structural Vector Autoregressions by Stochastic Volatility

In Structural Vector Autoregressive (SVAR) models, heteroskedasticity can be exploited to identify structural parameters statistically. In this paper, we propose to capture time variation in the second moment of structural shocks by a stochastic volatility (SV) model, assuming that their log variances follow latent AR(1) processes. Estimation is performed by Gaussian Maximum Likelihood and an e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007