Improving accuracy by subpixel smoothing in the finite-difference time domain.
نویسندگان
چکیده
Finite-difference time-domain (FDTD) methods suffer from reduced accuracy when modeling discontinuous dielectric materials, due to the inhererent discretization (pixelization). We show that accuracy can be significantly improved by using a subpixel smoothing of the dielectric function, but only if the smoothing scheme is properly designed. We develop such a scheme based on a simple criterion taken from perturbation theory and compare it with other published FDTD smoothing methods. In addition to consistently achieving the smallest errors, our scheme is the only one that attains quadratic convergence with resolution for arbitrarily sloped interfaces. Finally, we discuss additional difficulties that arise for sharp dielectric corners.
منابع مشابه
Accurate finite-difference time-domain simulation of anisotropic media by subpixel smoothing.
Finite-difference time-domain methods suffer from reduced accuracy when discretizing discontinuous materials. We previously showed that accuracy can be significantly improved by using subpixel smoothing of the isotropic dielectric function, but only if the smoothing scheme is properly designed. Using recent developments in perturbation theory that were applied to spectral methods, we extend thi...
متن کاملImproving accuracy by sub-pixel smoothing in FDTD
Finite-difference time-domain (FDTD) methods suffer from reduced accuracy when modeling discontinuous dielectric materials, due to the inhererent discretization (“pixellization”). We show that accuracy can be significantly improved by using a sub-pixel smoothing of the dielectric function, but only if the smoothing scheme is properly designed. We develop such a scheme based on a simple criterio...
متن کاملAccurate FDTD simulation of anisotropic media by subpixel smoothing Citation
"Accurate finite-difference time-domain simulation of anisotropic media by subpixel smoothing," Opt. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.
متن کاملSubpixel smoothing for conductive and dispersive media in the finite-difference time-domain method.
Staircasing of media properties is one of the intrinsic problems of the finite-difference time-domain method, which reduces its accuracy. There are different approaches for solving this problem, and the most successful of them are based on correct approximation of inverse permittivity tensor epsilon(-1) at the material interface. We report an application of this tensor method for conductive and...
متن کاملThe Image Curvature Microscope: Accurate Curvature Computation at Subpixel Resolution
We detail in this paper the numerical implementation of the so-called image curvature microscope, an algorithm that computes accurate image curvatures at subpixel resolution, and yields a curvature map conforming with our visual perception. In contrast to standard methods, which would compute the curvature by a finite difference scheme, the curvatures are evaluated directly on the level lines o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Optics letters
دوره 31 20 شماره
صفحات -
تاریخ انتشار 2006