Energy harvesting from low frequency applications using piezoelectric materials
نویسندگان
چکیده
Articles you may be interested in Piezoelectric energy harvester converting strain energy into kinetic energy for extremely low frequency operation Appl. Energy harvesting from ambient low-frequency magnetic field using magneto-mechano-electric composite cantilever Appl. Frequency up-converted wide bandwidth piezoelectric energy harvester using mechanical impact Nonlinear output properties of cantilever driving low frequency piezoelectric energy harvester Appl. Cantilever driving low frequency piezoelectric energy harvester using single crystal material 0.71Pb(Mg1/3Nb2/3)O3-0.29PbTiO3 In an effort to eliminate the replacement of the batteries of electronic devices that are difficult or impractical to service once deployed, harvesting energy from mechanical vibrations or impacts using piezoelectric materials has been researched over the last several decades. However, a majority of these applications have very low input frequencies. This presents a challenge for the researchers to optimize the energy output of piezoelectric energy harvesters, due to the relatively high elastic moduli of piezoelectric materials used to date. This paper reviews the current state of research on piezoelectric energy harvesting devices for low frequency (0–100 Hz) applications and the methods that have been developed to improve the power outputs of the piezoelectric energy harvesters. Various key aspects that contribute to the overall performance of a piezoelectric energy harvester are discussed, including geometries of the piezoelectric element, types of piezoelectric material used, techniques employed to match the resonance frequency of the piezoelectric element to input frequency of the host structure, and electronic circuits specifically designed for energy harvesters. V C 2014 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.
منابع مشابه
A periodic folded piezoelectric beam for efficient vibration energy harvesting
Periodic piezoelectric beams have been used for broadband vibration energy harvesting in recent years. In this paper, a periodic folded piezoelectric beam (PFPB) is introduced. The PFPB has special features that distinguish it from other periodic piezoelectric beams. The Adomian decomposition method (ADM) is used to calculate the first two band gaps andtwelve natural frequencies of the PF...
متن کاملImproving Power Density of Piezoelectric Vibration-Based Energy Scavengers
Vibration energy harvesting with piezoelectric materials currently generate up to 300 microwatts per cm2, using it to be mooted as an appropriate method of energy harvesting for powering low-power electronics. One of the important problems in bimorph piezoelectric energy harvesting is the generation of the highest power with the lowest weight. In this paper the effect of the shape and geometry ...
متن کاملTowards an autonomous self-tuning vibration energy harvesting device for wireless sensor network applications
Future deployment of wireless sensor networks will ultimately require a self-sustainable local power source for each sensor, and vibration energy harvesting is a promising approach for such applications. A requirement for efficient vibration energy harvesting is to match the device and source frequencies. While techniques to tune the resonance frequency of an energy harvesting device have recen...
متن کاملInvestigation of the Size Effect on the Nano-beam Type Piezoelectric Low Power Energy Harvesting
In this paper, size dependent beam type peizoelectric energy hardvester is investigated. For this goal, first nonlinear formulation of isotropic piezoelectric Euler-Bernoulli nano-beam is developed based on the size-dependent piezoelectricity theory then special beam type piezoelectric energy hardvester is probed for different parameters. Basic nonlinear equations of piezoelectric nano-beam are...
متن کاملDevelopment of a laboratory system to investigate and store electrical energy from the vibrations of a piezoelectric beam
Energy harvesting from surrounding environment has been attractive for many researchers in recent years. Therefore, developing appropriate test apparatus to study energy harvesting mechanisms and their performance is of paramount importance. Due to their electromechanical characteristics, piezoelectric materials are used for harvesting energy from environmental vibrations. For optimum utili...
متن کامل