Intercellular ultrafast Ca2+ wave in vascular smooth muscle cells: numerical and experimental study
نویسندگان
چکیده
Vascular smooth muscle cells exhibit intercellular Ca(2+) waves in response to local mechanical or KCl stimulation. Recently, a new type of intercellular Ca(2+) wave was observed in vitro in a linear arrangement of smooth muscle cells. The intercellular wave was denominated ultrafast Ca(2+) wave and it was suggested to be the result of the interplay between membrane potential and Ca(2+) dynamics which depended on influx of extracellular Ca(2+), cell membrane depolarization and its intercel- lular propagation. In the present study we measured experimentally the conduction velocity of the membrane depolarization and performed simulations of the ultrafast Ca(2+) wave along coupled smooth muscle cells. Numerical results reproduced a wide spectrum of experimental observations, including Ca(2+) wave velocity, electrotonic membrane depolarization along the network, effects of inhibitors and independence of the Ca(2+) wave speed on the intracellular stores. The numerical data also provided new physiological insights suggesting ranges of crucial model parameters that may be altered experimentally and that could significantly affect wave kinetics allowing the modulation of the wave characteristics experimentally. Numerical and experimental results supported the hypothesis that the propagation of membrane depolarization acts as an intercellular messenger mediating intercellular ultrafast Ca(2+) waves in smooth muscle cells.
منابع مشابه
Effect of Oxidized Low Density Lipoprotein on the Expression of Runx2 and SPARC Genes in Vascular Smooth Muscle Cells
Background: Vascular calcification is an important stage in atherosclerosis. During this stage, vascular smooth muscle cells (VSMC) synthesize many osteogenic factors such as osteonectin (encoded by SPARC). Oxidative stress plays a critical role in atherosclerosis progression, and its accumulation in the vascular wall stimulates the development of atherosclerosis and vascular calcification. The...
متن کاملThe role of autophagy in advanced glycation end product-induced proliferation and migration in rat vascular smooth muscle cells
Objective(s): To investigate the role of autophagy in advanced glycation end products (AGEs)-induced proliferation and migration in rat vascular smooth muscle cells (VSMCs).Materials and Methods: After culture, VSMCs were treated with 0, 1, 10, and 100 μg/ml concentrations of AGEs. Autophagy specific protein light chain 3 (LC3)-I/II was determined by western blotting, autophagosomes were observ...
متن کاملGestational hypothyroidism-induced changes in L-type calcium channels of rat aorta smooth muscle and their impact on the responses to vasoconstrictors
Objective(s): Thyroid hormones play an essential role in fetal growth and maternal hypo-thyroidism which leads to cardiovascular deficiency in their offspring. Considering this, we intended to investigate the impact of gestational hypothyroidism on offspring vascular contractibility and possible underlying mechanisms. Materials and Methods: Hypothyroidism was induced in female rats by administ...
متن کاملInflammation and Vascular Calcification Causing Effects of Oxidized HDL are Attenuated by Adiponectin in Human Vascular Smooth Muscle Cells
The role of oxidized high-density lipoprotein (oxHDL) and the protective effects of adiponectin in terms of vascular calcification is not well established. This study was conducted to investigate the effects of oxHDL with regards to inflammation and vascular calcification and to determine the protective role of adiponectin in attenuating the detrimental effects of oxHDL. Cell viability, mineral...
متن کاملWaves of Calcium Depletion in the Sarcoplasmic Reticulum of Vascular Smooth Muscle Cells: An Inside View of Spatiotemporal Ca2+ Regulation
Agonist-stimulated smooth muscle Ca2+ waves regulate blood vessel tone and vasomotion. Previous studies employing cytoplasmic Ca2+ indicators revealed that these Ca2+ waves were stimulated by a combination of inositol 1,4,5-trisphosphate- and Ca2+ -induced Ca2+ release from the endo/sarcoplasmic reticulum. Herein, we present the first report of endothelin-1 stimulated waves of Ca2+ depletion fr...
متن کامل