Electrostatic interactions modulate the RNA-binding and transactivation specificities of the human immunodeficiency virus and simian immunodeficiency virus Tat proteins.
نویسندگان
چکیده
The transcriptional activating (Tat) proteins from human immunodeficiency virus and simian immunodeficiency virus are sequence-specific RNA-binding proteins. In human immunodeficiency virus Tat, a single arginine residue, flanked on each side by three to four basic amino acids, mediates specific binding to a bulge region in trans-acting responsive element (TAR) RNA. We have systematically mutated the flanking charged residues and found that, in addition to the position of the sequence-specific arginine, the particular arrangement of nonspecific electrostatic interactions is an important determinant of RNA-binding specificity and transactivation activity. These additional electrostatic contacts may help stabilize the structure of TAR RNA when bound to arginine. One critical electrostatic interaction, located two residues N-terminal to the arginine, is absent in the simian immunodeficiency virus Tat protein and accounts for the difference in promoter specificities of the human and simian immunodeficiency viral proteins.
منابع مشابه
Electrostatic interactions modulate the RNA-binding and transactivation specificities of the human immunodeficiency virus and simian immunodeficiency virus Tat
The transcriptional activating (Tat) proteins from human immunodeficiency virus and simian immunodeficiency virus are sequence-specific RNA-binding proteins. In human immunodeficiency virus Tat, a single arginine residue, flanked on each side by three to four basic amino acids, mediates specific binding to a bulge region in trans-acting responsive element (TAR) RNA. We have systematically mutat...
متن کاملReplication of human immunodeficiency viruses engineered with heterologous Tat-transactivation response element interactions.
Human immunodeficiency viruses (HIVs) and the related bovine lentiviruses bovine immunodeficiency virus (BIV) and Jembrana disease virus (JDV) utilize the viral Tat protein to activate viral transcription. The arginine-rich RNA-binding domains of the Tat proteins bind to their cognate transactivation response element (TAR) RNA hairpins located at the 5' ends of the viral mRNAs, resulting in enh...
متن کاملFunctional and Physical Consequence of Human Immunodefficiency Virus Transactivator TAT Interaction with Human Cell Cycle Regulator p53
Human immunodeficiency virus (HIV) transactivator Tat is a potent activator of both viral and cellular genes. Tat has also been implicated in the development of AIDS-related malignancy. Here, we show that Tat physically and functionally is able to sequester the cell cycle check point protein p53. This sequestration results in non-functional promoter activity of cyclin-dependent kinase/cyclin i...
متن کاملQuantification Analysis of Dot Blot Assays for Human Immunodeficiency Virus Type 1 and 2 Antibodies
Objective Dot Blot (DB) assay provides highly specific results, but usually not reliable for quantification of antibody production. The need for a more objective DB assay to provide a better definition of the immune status, against HIV antigens, promoted this study to be done to develop a quantitative DB assay. Material and Methods Dot blot (DB) strips for antibodies directed to human immuno...
متن کاملExon2 of HIV-2 Tat contributes to transactivation of the HIV-2 LTR by increasing binding affinity to HIV-2 TAR RNA.
Human immunodeficiency virus types 1 and 2 (HIV-1 and HIV-2) express related Tat proteins that are encoded in two exons. Tat proteins bind directly to the TAR RNA element contained in the 5' ends of viral transcripts and thereby stimulate transcription through an as yet unidentified mechanism. We have investigated the functional significance of exon2 of the HIV-2 Tat protein by examining proper...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 90 4 شماره
صفحات -
تاریخ انتشار 1993