Extension of Strongly Regular Graphs
نویسندگان
چکیده
The Friendship theorem states that if any two people in a party have exactly one common friend, then there exists a politician who is a friend of everybody. In this paper, we generalize the Friendship Theorem. Let λ be any nonnegative integer and μ be any positive integer. Suppose each pair of friends have exactly λ common friends and each pair of strangers have exactly μ common friends in a party. The corresponding graph is a generalization of strongly regular graphs obtained by relaxing the regularity property on vertex degrees. We prove that either everyone has exactly the same number of friends or there exists a politician who is a friend of everybody. As an immediate consequence, this implies a recent conjecture by Limaye et. al.
منابع مشابه
CERTAIN TYPES OF EDGE m-POLAR FUZZY GRAPHS
In this research paper, we present a novel frame work for handling $m$-polar information by combining the theory of $m-$polar fuzzy sets with graphs. We introduce certain types of edge regular $m-$polar fuzzy graphs and edge irregular $m-$polar fuzzy graphs. We describe some useful properties of edge regular, strongly edge irregular and strongly edge totally irregular $m-$polar fuzzy graphs. W...
متن کاملExplicit Graphs with Extension Properties
We exhibit explicit, combinatorially defined graphs satisfying the k extension axiom: Given any set of k distinct vertices and any partition of it into two pieces, there exists another vertex adjacent to all of the vertices in the first piece and to none in the second. Quisani: I’ve been reading about zero-one laws, and many of the results involve extension axioms. In the simple case of graphs,...
متن کاملOn the embedding of graphs into graphs with few eigenvalues
A graph is called of type k if it is connected, regular, and has k distinct eigenvalues. For example graphs of type 2 are the complete graphs, while those of type 3 are the strongly regular graphs. We prove that for any positive integer n, every graph can be embedded in n cospectral, non-isomorphic graphs of type k for every k ≥ 3. Furthermore, in the case k ≥ 5 such a family of extensions can ...
متن کاملStrongly walk - regular grapsh
We study a generalization of strongly regular graphs. We call a graph strongly walkregular if there is an ` > 1 such that the number of walks of length ` from a vertex to another vertex depends only on whether the two vertices are the same, adjacent, or not adjacent. We will show that a strongly walk-regular graph must be an empty graph, a complete graph, a strongly regular graph, a disjoint un...
متن کاملDistance-Regular Graphs with Strongly Regular Subconstituents
In [3] Cameron et al. classified strongly regular graphs with strongly regular subconstituents. Here we prove a theorem which implies that distance-regular graphs with strongly regular subconstituents are precisely the Taylor graphs and graphs with a1 = 0 and ai ∈ {0, 1} for i = 2, . . . , d .
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. J. Comb.
دوره 15 شماره
صفحات -
تاریخ انتشار 2008