Recognition of Handwritten Persian/Arabic Numerals Based on Robust Feature Set and K-NN Classifier
نویسندگان
چکیده
Persian handwritten numerals recognition has been a frontier area of research for the last few decades under pattern recognition. Recognition of handwritten numerals is a difficult task owing to various writing styles of individuals. A robust and efficient method for Persian/Arabic handwritten numerals recognition based on K Nearest Neighbors (K-NN) classifier is presented in this paper. The system first prepares a contour form of the handwritten numerals, then the transit, angle and distance features information about the character is extracted and finally K-NN classifier is used to character recognition. Angle, transit and distance features of a character have been computed based on distribution of points on the bitmap image of character. In K-NN method, the Euclidean distance between testing point and reference points is calculated in order to find the k-nearest neighbors. We evaluated our method on 20,000 handwritten samples of Persian numerals. Using 15,000 samples for training, we tested our method on other 5,000 samples and obtained 99.82% correct recognition rate. Further, we obtained 89.90% accuracy using four-fold cross validation technique on 20,000 dataset.
منابع مشابه
Combined Classifiers in Recognition of Handwritten Kannada Numerals: a Hybrid Approach
The recognition of handwritten numeral is an important area of research for its applications in post office, banks and other organizations. This paper presents automatic recognition of handwritten Kannada numerals using both unsupervised and supervised classifiers. Four different types of structural features, namely, direction frequency code, water reservoir, end points and average boundary len...
متن کاملNeural Network Based Recognition System Integrating Feature Extraction and Classification for English Handwritten
Handwriting recognition has been one of the active and challenging research areas in the field of image processing and pattern recognition. It has numerous applications that includes, reading aid for blind, bank cheques and conversion of any hand written document into structural text form. Neural Network (NN) with its inherent learning ability offers promising solutions for handwritten characte...
متن کاملMultilevel Classifiers in Recognition of Handwritten Kannada Numerals
The recognition of handwritten numeral is an important area of research for its applications in post office, banks and other organizations. This paper presents automatic recognition of handwritten Kannada numerals based on structural features. Five different types of features, namely, profile based 10-segment string, water reservoir; vertical and horizontal strokes, end points and average bound...
متن کاملComparison of the Multi Layer Perceptron and the Nearest Neighbor Classifier for Handwritten Numeral Recognition
The work presents the results of an investigation conducted to compare the performances of the Multi Layer Perceptron (MLP) and the Nearest Neighbor (NN) classifier for handwritten numeral recognition problem. The comparison is drawn in terms of the recognition performance and the computational requirements of the individual classifiers. The results show that a two-layer perceptron performs com...
متن کاملData fusion based framework for the recognition of Isolated Handwritten Kannada Numerals
combining classifiers appears as a natural step forward when a critical mass of knowledge of single classifier models has been accumulated. Although there are many unanswered questions about matching classifiers to real-life problems, combining classifiers is rapidly growing and enjoying a lot of attention from pattern recognition and machine learning communities. For any pattern classification...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1407.6492 شماره
صفحات -
تاریخ انتشار 2014