Cerebral Hemodynamic Responses During Dynamic Posturography: Analysis with a Multichannel Near-Infrared Spectroscopy System
نویسندگان
چکیده
To investigate cortical roles in standing balance, cortical hemodynamic activity was recorded from the right hemisphere using near-infrared spectroscopy (NIRS) while subjects underwent the sensory organization test (SOT) protocol that systematically disrupts sensory integration processes (i.e., somatosensory or visual inputs or both). Eleven healthy men underwent the SOT during NIRS recording. Group statistical analyses were performed based on changes in oxygenated hemoglobin concentration in 10 different cortical regions of interest and on a general linear analysis with NIRS statistical parametric mapping. The statistical analyses indicated significant activation in the right frontal operculum (f-Op), right parietal operculum (p-Op), and right superior temporal gyrus (STG), right posterior parietal cortex (PPC), right dorsal and ventral premotor cortex (PMC), and the supplementary motor area (SMA) under various conditions. The activation patterns in response to specific combinations of SOT conditions suggested that (1) f-Op, p-Op, and STG are essential for sensory integration when standing balance is perturbed; (2) the SMA is involved in the execution of volitional action and establishment of new motor programs to maintain postural balance; and (3) the PPC and PMC are involved in the updating and computation of spatial reference frames during instances of sensory conflict between vestibular and visual information.
منابع مشابه
Assessment of cortical hemodynamics by multichannel near-infrared spectroscopy in steno-occlusive disease of the middle cerebral artery.
BACKGROUND AND PURPOSE In a pilot study we evaluated near-infrared spectroscopy as to its potential benefit in monitoring patients with steno-occlusive disease of a major cerebral artery for alterations in cortical hemodynamics. METHODS Cortical maps of time-to-peak (TTP) in 10 patients unilaterally affected by severe stenosis or occlusion of the middle cerebral artery were acquired by multic...
متن کاملComparison of principal and independent component analysis in removing extracerebral interference from near-infrared spectroscopy signals.
Near-infrared spectroscopy (NIRS) is a method for noninvasive estimation of cerebral hemodynamic changes. Principal component analysis (PCA) and independent component analysis (ICA) can be used for decomposing a set of signals to underlying components. Our objective is to determine whether PCA or ICA is more efficient in identifying and removing scalp blood flow interference from multichannel N...
متن کاملFunctional brain imaging of multi-sensory vestibular processing during computerized dynamic posturography using near-infrared spectroscopy
Functional near-infrared spectroscopy (fNIRS) is a non-invasive brain imaging method that uses light to record regional changes in cerebral blood flow in the cortex during activation. fNIRS uses portable wearable sensors to allow measurements of brain activation during tasking. In this study, fNIRS was used to investigate how the brain processes information from multiple sensory modalities duri...
متن کاملSpatial mapping of dynamic cerebral autoregulation by multichannel near-infrared spectroscopy in high-grade carotid artery disease.
The exact spatial distribution of impaired cerebral autoregulation in carotid artery disease is unknown. In this pilot study, we present a new approach of multichannel near-infrared spectroscopy (mcNIRS) for non-invasive spatial mapping of dynamic autoregulation in carotid artery disease. In 15 patients with unilateral severe carotid artery stenosis or occlusion, cortical hemodynamics in the bi...
متن کاملMultichannel near infrared spectroscopy indicates regional variations in cerebral autoregulation in infants supported on extracorporeal membrane oxygenation.
Assessing noninvasively cerebral autoregulation, the protective mechanism of the brain to maintain constant cerebral blood flow despite changes in blood pressure, is challenging. Infants on life support system (ECMO) for cardiorespiratory failure are at risk of cerebral autoregulation impairment and consequent neurological problems. We measured oxyhaemoglobin concentration (HbO(2)) by multichan...
متن کامل